Home
Class 11
MATHS
" 9.Find "lim(x rarr oo)(a(0)x^(n)+a(1)x...

" 9.Find "lim_(x rarr oo)(a_(0)x^(n)+a_(1)x^(n-1)+...+a_(n))/(b_(0)x^(m)+b_(1)x^(m-1)+...+b_(m)),a_(0)>0,b_(0)>0

Promotional Banner

Similar Questions

Explore conceptually related problems

If n is a positive integer,then find the value of lim_(n rarr oo)(a_(0)x^(n)+a_(1)x^(n-1)+...+a_(n))/(b_(0)x^(n)+b_(1)x^(n-1)+...+b_(n))

If n is a positive integer,then find the value of lim_(n rarr oo)(a_(0)x^(n)+a_(1)x^(n-1)+...+a_(n))/(b_(0)x^(n)+b_(1)x^(n-1)+...+b_(n))

lim_(x rarr oo)(a_(0)x^(n)+a_(1)x^(n-1)+a_(2)x^(n-2)+...+a_(n))/(b_(0)x^(m)+b_(1)x^(m-1)+b_(2)x^(m-2)+...+b_(m)) ; m, n>0 is equal to A. 0 when m > n B. oo when m C. (a_(0))/(b_(0)) when m=n D. none of these

lim_(x rarr oo)(a_(n)x^(n)+...+a_(1)x+a_(0))/(b_(m)x^(m)+.....+b_(1)x+b_(0))= (n < m)

lim_(x rarr0)((a_(1)^(x)+a_(2)^(x)......+a_(n)^(x))/(n))^((1)/(x))=

lim_(x rarr oo)[((x+a_(1))(x+a_(2))dots.......(x+a_(n)))^((1)/(n))-x]

Evaluate Lt_(xtooo)(a_(0)x^(m)+a_(1)x^(m-1)+...+a_(m))/(b_(0)x^(n)+b_(1)x^(n-1)+...+b_(n)) where m and n are positive integers and a_(0)ne0,b_(0)ne0 .

Lt_(x to 0)((a_(1)^(x)+a_(2)^(x)+...+a_(n)^(x))/(n))^(1//x)=

f(x)=(a_(2n)x^(2n)+a_(2n-1)x^(2n-1)+...+a_(1)x+a_(0))/(b_(2n)x^(2n)+b_(2n-1)x^(2n-1)+....+b_(1)x+b_(0)) where n in N,a_(i),b_(i)in R and b_(2n!=0). If domain of f(x) is R ,then

lim_(x rarr oo){((a_(1))^((1)/(x))+(a_(2))^((1)/(x))+...+(a_(n))^((1)/(x)))/(n)}^(nx)