Home
Class 12
MATHS
A straight line L cuts the sides AB, AC,...

A straight line L cuts the sides AB, AC, AD of a parallelogram ABCD at `B_(1), C_(1), d_(1)` respectively. If `vec(AB_(1))=lambda_(1)vec(AB), vec(AD_(1))=lambda_(2)vec(AD) and vec(AC_(1))=lambda_(3)vec(AC),` then `(1)/(lambda_(3))` equal to

Promotional Banner

Similar Questions

Explore conceptually related problems

A straight line L cuts the lines A B ,A Ca n dA D of a parallelogram A B C D at points B_1, C_1a n dD_1, respectively. If ( vec A B)_1=lambda_1 vec A B ,( vec A D)_1=lambda_2 vec A Da n d( vec A C)_1=lambda_3 vec A C , then 1/(lambda_3) .

A straight line L cuts the lines A B ,A Ca n dA D of a parallelogram A B C D at points B_1, C_1a n dD_1, respectively. If ( vec A B_1)=lambda_1 vec A B ,( vec A D_1)=lambda_2 vec A Da n d( vec A C_1)=lambda_3 vec A C , then prove that 1/(lambda_3)=1/(lambda_1)+1/(lambda_2) .

A straight line L cuts the lines A B ,A Ca n dA D of a parallelogram A B C D at points B_1, C_1a n dD_1, respectively. If ( vec A B)_1,lambda_1 vec A B ,( vec A D)_1=lambda_2 vec A Da n d( vec A C)_1=lambda_3 vec A C , then prove that 1/(lambda_3)=1/(lambda_1)+1/(lambda_2) .

A straight line L cuts the lines A B ,A Ca n dA D of a parallelogram A B C D at points B_1, C_1a n dD_1, respectively. If ( vec A B)_1,lambda_1 vec A B ,( vec A D)_1=lambda_2 vec A Da n d( vec A C)_1=lambda_3 vec A C , then prove that 1/(lambda_3)=1/(lambda_1)+1/(lambda_2) .

A straight line L cuts the lines A B ,A Ca n dA D of a parallelogram A B C D at points B_1, C_1a n dD_1, respectively. If ( vec A B)_1,lambda_1 vec A B ,( vec A D)_1=lambda_2 vec A Da n d( vec A C)_1=lambda_3 vec A C , then prove that 1/(lambda_3)=1/(lambda_1)+1/(lambda_2) .

squareABCD is a parallelogram. (A_(1)) and B_(1) are midpoints of the sides bar(BC) and bar(AD) respectively. If vec("AA")_(1)+vec(AB)_(1)=lambda vec(AC) then lambda = …………

ABCD is a parallelogram and A_(1) " and " B_(1) are the midpoints of sides BC and CD respectively. If vec(A""A_(1))+vec(AB_(1))=lambda/2vec(AC) , then lambda is equal to -

Let B_1,C_1 and D_1 are points on AB,AC and AD of the parallelogram ABCD, such that vec(AB_1)=k_1vec(AC,) vec(AC_1)=k_2vec(AC) and vec(AD_1)=k_2 vec(AD,) where k_1,k_2 and k_3 are scalar.

ABCD a parallelogram, and A_1 and B_1 are the midpoints of sides BC and CD, respectively. If vec(aA)_1 + vec(AB)_1 = lamda vec(AC) , then lamda is equal to

ABCD a parallelogram, and A_1 and B_1 are the midpoints of sides BC and CD, respectively. If vec(A A)_1 + vec(AB)_1 = lamda vec(AC) , then lamda is equal to