Home
Class 12
MATHS
For f(x)=x^(3)+bx^(2)+cx+d, if b^(2) gt ...

For `f(x)=x^(3)+bx^(2)+cx+d`, if `b^(2) gt 4c gt 0` and `b, c, d in R`, then f(x)

Promotional Banner

Similar Questions

Explore conceptually related problems

Let f(x)=x^(3) + bx^(2) +cx +d, 0 lt b^(2) lt c . Then f(x)-

Let f(x) = ax^(3) + bx^(2) + cx + d, a != 0 , where a, b, c, d in R . If f(x) is one-one and onto, then which of the following is correct ?

Let f(x) = ax^(3) + bx^(2) + cx + d, a != 0 , where a, b, c, d in R . If f(x) is one-one and onto, then which of the following is correct ?

If f(x)=x^3+bx^2+cx+d and 0< b^2 < c , then

If f(x)=x^3+bx^2+cx+d and 0< b^2 < c , then

If f(x) = x^(3) + bx^(2) + cx +d and 0lt b^(2) lt c .then in (-infty, infty)

If f(x) = x^(3) + bx^(2) + cx + d and 0 lt b^(2) lt c , then in (-oo, oo) , a)f(x) is a strictly increasing function b)f(x) has local maxima c)f(x) is a strictly decreasing function d)f(x) is bounded

If f(x)=x^(3)+bx^(2)+cx+d and 0 lt b^(2) lt c , then in (-oo, oo), f(x) :

Let x_(1),x_(2),x_(3),x_(4) be the roots (real or complex) of the equation x^(4)+ax^(3)+bx^(2)+cx+d=0. If x_(1)+x_(2)=x_(3)+x_(4) and a,b,c, d in R, then find the value of b-c