Home
Class 9
MATHS
" If "(x)/(y)+(y)/(x)=-1(x,y!=0)," the v...

" If "(x)/(y)+(y)/(x)=-1(x,y!=0)," the value of "x^(3)-y^(3)" is "

Promotional Banner

Similar Questions

Explore conceptually related problems

If (x)/(y)+(y)/(x)=-1,[x,y!=0], then find the value of x^(3)-y^(3)

If (2x)/(3y)+(3y)/(2x)=1,(x,y!=0), then the value of 8x^(3)+27y^(3) is

(x)/(y)+(y)/(x)=-1(where,x,y!=0) then find the value of x^(3)-y^(3)

if x/y + y/x = -1 ( x, y != 0 ) , then the value of x^3 -y^3 is

If (x)/(y)+(y)/(x)=-1 , where x,y ne 0 then the value of (x^3-y^3) is

If x,y are real and (x-1)^(2)+(y-4)^(2)=0 then the value of x^(3)+y^(3) is

If x/y+y/x=-1 where xne0 and yne0 then the value of (x^3-y^3) is

If x,y are real numbers such that 3^((x)/(y)+1) -3^((x)/(y)-1) = 24 , then the value of (X+y)//(x-y) is:-