Home
Class 11
MATHS
If the points ((a^3)/((a-1))),(((a^2-3))...

If the points `((a^3)/((a-1))),(((a^2-3))/((a-1))),((b^3)/(b-1)),((b^2-3)/((b-1)))`,`((c^3)/(c-1))` and `(((c^2-3))/((c-1))),` where `a , b , c` are different from 1, lie on the `l x+m y+n=0` , then (a) `a+b+c=-m/l` (b)`a b+b c+c a=n/l` (c)`a b c=((m+n))/l` (d)`a b c-(b c+c a+a b)+3(a+b+c)=0`

Promotional Banner

Similar Questions

Explore conceptually related problems

If the points ((a^3)/((a-1))),(((a^2-3))/((a-1))),((b^3)/(b-1)),(((b^2-3)/((b-1))), and (((c^2-3))/((c-1))), where a , b , c are different from 1, lie on the l x+m y+n=0 , then

If the Point (a^3//(a-1),(a^2-3)//(a-1)),(b^2//(b-1),(b^2-3)//(b-1)), and (c^3//c-1,(c^2-3)/(c-1)) , where a,b,c are different from 1, lie on the line lx+my+n=0 then

If the points ((a^(3))/(a-1),(a^(2)-3)/(a-1)),((b^(3))/(b-1),(b^(3)-3)/(b-1)) and ((c^(3))/(c-1),(c^(3)-3)/(c-1)) where a,b,c are different from 1 lie on the line lx+my+n=0a+b+c=(m)/(l)ab+bc+ca+(n)/(l)=0abc=((3m+n))/(l)abc-(bc+ca+ab)+3(a+b+c)=0

If the points ((a^(3))/(a-1),(a^(2)-3)/(a-1))((b^(3))/(b-1),(b^(2)-3)/(b-1)),((c^(3))/(c-1),(c^(2)-3)/(c-1)) are a!=1,b!=1,c!=1, then find the value of abc-(ab+bc+ca)+3(a+b+c)

If a+b+c=0 , then (a^2)/(b c)+(b^2)/(c a)+(c^2)/(a b)=?\ (a)0 (b) 1 (c) -1 (d) 3

If a,b,c are different and |(a,a^(2),a^(3)-1),(b,b^(2),b^(3)-1),(c,c^(2),c^(3)-1)|=0 then

If a+b+c=0 and a^2+b^2+c^2=1, then (a) a b+b c+c a=1/2 (b) a b+b c+c a=-1/2 (c) a^4+b^4+c^4=1/2 (d) a^4+b^4+c^4=3/2

If [[a,a^(2),a^(3)-1b,b^(2),b^(3)-1c,c^(2),c^(3)-1]]=0

1,1,1a,b,ca^(3),b^(3),c^(3)]|=(a-b)(b-c)(c-a)(a+b+c)