Home
Class 12
MATHS
[" 13.Let "I=int(a)^(b)(x^(4)-2x^(2))dx"...

[" 13.Let "I=int_(a)^(b)(x^(4)-2x^(2))dx" .If "I" is minimum,then the ordered "],[pair(a,b)" is "quad (2019" Main,"10" Jan "I)],[[" (a) "(-sqrt(2),0)," (b) "(0,sqrt(2))],[" (c) "(sqrt(2),-sqrt(2))," (d) "(-sqrt(2),sqrt(2))]]

Promotional Banner

Similar Questions

Explore conceptually related problems

Let I=int_(a)^(b) (x^4-2x^2)dx . If is minimum, then the ordered pair (a, b) is

Let I=int_(a)^(b) (x^4-2x^2)dx . If is minimum, then the ordered pair (a, b) is

Let I=int_(a)^(b) (x^4-2x^2)dx . If is minimum, then the ordered pair (a, b) is

I=int_(0)^(2)x sqrt(4-x^(2))dx

I=int_(0)^(4)(x^(2)+2x+4)dx

Let I=int_(a)^(b)(x^(4)-2x^(2))dx . If I is minimum then the ordered pair (a,b) is (-sqrtk,sqrtl) . The value of (k+l) is _________.

Let I=int_(10)^(19)(sinx)/(1+x^8)dx . Then,

If a lt int_(0)^(2pi)) (1)/(10+3 cos x)dx lt b . Then the ordered pair (a,b) is

If a lt int_(0)^(2pi) (1)/(10+3 cos x)dx lt b . Then the ordered pair (a,b) is

I=int(dx)/((a+dx^2)sqrt(b-a x^2))