Home
Class 12
MATHS
If f:R rarr R satisfying f(x-f(y))=f(f(y...

If `f:R rarr R` satisfying f(x-f(y))=f(f(y))+xf(y)+f(x)-1, for all `x,y in R`, then `(-f(10))/7` is ……… .

Promotional Banner

Similar Questions

Explore conceptually related problems

If f: R rarrR satisfying: f(x-f(y)) = f(f(y) +f(x)-1, for all x, y in R , then -f(10) equals.

If f:R rarr R satisfies f(x+y)=f(x)+f(y), for all x,y in R and f(1)=2 then sum_(r=1)^(7)f(1)

If a function f:R rarr R be such that f(x-f(y))=f(f(y))+xf(y)+f(x)-1AA x,y in R then f(2)=

Determine all functions f : R rarr R satisfying f(x-f(y)) = f(f(y)) + xf(y) + f(x) - 1 AA x, y in R

If f:R to R satisfies f(x+y)=f(x)+f(y), for all x, y in R and f(1)=7, then sum_(r=1)^(n)f( r) is

If f:R to R satisfies f(x+y)=f(x)+f(y), for all x, y in R and f(1)=7, then sum_(r=1)^(n)f( r) is

If f : R to R satisfies f(x + y)=f(x)+f(y) for all x, y in R and f(1)=7 , then sum_(r=1)^n f(r)

A function f:R rarr R satisfy the equation f(x)f(y)-f(xy)=x+y for all x,y in R and f(y)>0, then

If f:RtoR satisfies f(x+y)=f(x)+f(y) for all x,y in R and f(1)=7, then sum_(r=1)^(n) f(r) , is