Home
Class 11
MATHS
" ii) If "bar(a)timesbar(b)=bar(b)timesb...

" ii) If "bar(a)timesbar(b)=bar(b)timesbar(c)!=bar(0)" ,then show that "bar(a)+bar(c)=tbar(b)" for some scalar "t" ."

Promotional Banner

Similar Questions

Explore conceptually related problems

If bar(a) xx bar(b) = bar(b) xx bar(c ) != 0 , then show that bar(a) + bar(c ) = bar(p)bar(b) , where p is some scalar.

If bar(c)=3bar(a)-2bar(b) , then prove that [bar(a)bar(b)bar(c)]=0 .

If bar(a)+bar(b)+bar(c)=bar(0) then prove that bar(a)xxbar(b)=bar(b)xxbar(c)=bar(c)xxbar(a) .

If bar(a)+bar(b)+bar(c)=bar(0) then bar(a)timesbar(b)=

If |bar(a)|=|bar(b)|=1 and |bar(a)timesbar(b)|=bar(a)*bar(b) , then |bar(a)+bar(b)|^(2)=

If [bar(a) bar(b) bar(c)]=2 ,then [2(bar(b)timesbar(c))(-bar(c)timesbar(a))(bar(b)timesbar(a))] is equal to

If bar(c) = 3 bar(a) - 2 bar(b) then prove that [(bar(a),bar(b),bar(c))] = 0

If [bar(a) bar(b) bar(c)]=2 then [2(bar(b)timesbar(c))(bar(-c)timesbar(a))(bar(b)timesbar(a))] is equal to

If bar(a)+bar(b)+bar( c )=0 , then show that bar(a)xx bar(b)=bar(b)xx bar( c )=bar( c )xx bar(a) . Interpret the result geometrically.

If bar(a)+2bar(b)+3bar(c)=bar(0) then bar(a)xxbar(b)+bar(b)xxbar(c)+bar(c)xxbar(a)=