Home
Class 12
MATHS
[2/14quad cos^(4)x+cos^(-1)y=0quad lot d...

[2/14quad cos^(4)x+cos^(-1)y=0quad lot dquad 9dxd],[coc(x)quad (2)quad x^(2)=2xy cos theta+y^(2)=sin^(2)theta]

Promotional Banner

Similar Questions

Explore conceptually related problems

If cos^(-1)x+cos^(-1)y=theta show that x^(2)-2xy cos theta+y^(2)=sin^(2)theta

If cos^(-1)((x)/(2))+cos^(-1)((y)/(3))=theta, prove that 9x^(2)-12xy cos theta+4y^(2)=36sin^(2)theta

If cos ^(-1) x+ cos ^(-1) y= theta , show that x^(2)-2xycos theta +y^(2)=sin ^(2) theta

If cos^(-1)x//2+cos^(-1) y//3=theta," prove that "9x^(2)-12xy cos theta+4y^(2)=36sin^(2) theta

If "cos"^(-1) x/(2)+"cos"^(-1) y/(3)=theta , then prove that 9x^(2)-12xy " cos "theta+4y^(2)=36" sin "^(2)theta

If "cos"^(-1)(x/y) +"cos"^-1(y/3)= theta, "prove that" 9x^2- 12xy "cos" theta +4y^2 =36 "sin"^2 theta .

cos^(-1)(x//a)+cos^(-1)(y//b)=theta ,then (x^(2))/(a^(2))-(2xy)/(ab)cos theta+(y^(2))/(b^(2))=

If cos^(-1)(x)/(2)+cos^(-1)(y)/(3)=theta then the maximum of 9x^(2)-12xy costheta + 4y^(2) is

If cos^(-1)(x)/(2)+cos^(-1)(y)/(3)=theta then the maximum of 9x^(2)-12xy costheta + 4y^(2) is