Home
Class 13
MATHS
" If "f(x)=e^((-1)/(x^(2))),x!=0" and "f...

" If "f(x)=e^((-1)/(x^(2))),x!=0" and "f(0)=0" then "f'(0)" is "

Promotional Banner

Similar Questions

Explore conceptually related problems

if f(x)=e^(-(1)/(x^(2))),x>0 and f(x)=0,x<=0 then f(x) is

f(x)={e^(-(1)/(x^(2)))x>0 and 0x<=0 then f(x) is

Let f(x)={[((e^(3x)-1))/(x),,x!=0],[3,,x=0]} then 2f'(0) is

If f(x) = {{:(1/(1+e^(1//x)), x ne 0),(0,x=0):} then f(x) is

If f(x) = {{:(1/(1+e^(1//x)), x ne 0),(0,x=0):} then f(x) is

If f(x) is continuous at x=0 , where f(x)=((e^(3x)-1)sin x)/(x^(2)) , for x!=0 , then f(0)=

If f(x) = {(1/(1+e^(1/x)), x ne 0),(0, x= 0):} then f(x) is

Let f(x) = e^(x)g(x) , g(0)=2 and g (0)=1 , then find f'(0) .

If f(x) is continuous at x=0 , where f(x)=(e^(x^(2))-cosx)/(x^(2)) , for x!=0 , then f(0)=

If f(x)=(e^(1//x)-1)/(e^(1//x)+1)" for "x ne 0, f(0)=0" then at x=0, f(x) is"