Home
Class 12
MATHS
int(l)^(2)((1)/(x)-(1)/(2x^(2)))e^(2x)...

int_(l)^(2)((1)/(x)-(1)/(2x^(2)))e^(2x)

Promotional Banner

Similar Questions

Explore conceptually related problems

Evaluate the integrals int_(1)^(2)((1)/(x)-(1)/(2x^(2)))e^(2x)dx

int_(1)^(2)((1)/(x)-(1)/(x^(2)))e^(x)dx=e((e)/(2)-1)

int_(1)^(2)((1)/(x)-(1)/(x^(2)))e^(x)dx=e((e)/(2)-1)

int_(1)^(2)(1/(x)-(1)/(2x^(2)))e^(2x)dx

int_(1)^(2)((x^(2)-1)/(x^(2)))e^(x+(1)/(x))dx=e^((5)/(2))-e^(2)

int_(1)^(2)(e^(1//x))/(x^(2))dx

int_(1)^(2)(1/x - 1/(2x^2))e^(2x) dx .

int_ (1) ^ (2) ((1) / (x) - (1) / (2x ^ (2))) e ^ (2x) dx

int_(-1)^(1)(e^(-(1)/(x)))/(x^(2)(1+e^(-(2)/(x))))dx is equal to :

int_(1)^(e) e^(x)((x-1)/(x^(2)))dx=