Home
Class 11
MATHS
If f(x)=x|x|, then prove that f^(prime)(...

If `f(x)=x|x|,` then prove that `f^(prime)(x)=2|x|`

Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x)=x|x|, then prove that f'(x)=2|x|

If f(x)=x|x| , prove that f'(x)=2|x|

If f(x)=x|x|,prove that f'(x)=2|x|.

If f (x) = cot x, then prove that : f(-x)=-f(x)

If f (x) = cot x, then prove that : f(-x)=-f(x)

If f(x)=alphax^n , prove that alpha=(f^(prime)(1))/n .

If g is the inverse of f and f'(x)=1/(1+x^n) , prove that g^(prime)(x)=1+(g(x))^n

If f(x)=x+(1)/(x) , then prove that : {f(x)}^(3)=f(x^(3))+3*f((1)/(x))

If f(x)=x+(1)/(x) , then prove that : {f(x)}^(3)=f(x^(3))+3*f((1)/(x))

If f(x)=sin x + cos^(2)x , then prove that: f(x)=f(pi-x)