Home
Class 10
MATHS
" 1."z=-1-i sqrt(3)...

" 1."z=-1-i sqrt(3)

Promotional Banner

Similar Questions

Explore conceptually related problems

Principal argument of z=-1-i sqrt(3)

If z_(1)=1+i sqrt(3) , z_(2)=1-i sqrt(3), then (z_(1)^(100)+z_(2)^(100))/(z_(1)+z_(2))=

z_(1), z_(2) ,z_(3) are vertices of a triangle ABC having area Delta satisfies (z_(3)-z_(1))=(1-i sqrt(3))(z_(2)-z_(1)) and sqrt(3)|z_(2)-z_(3)|^(2)=k Delta then value of k^(2)=

If z_(1)=sqrt(3)-i, z_(2)=1+i sqrt(3) , then amp (z_(1)+z_(2))=

If z_(1)= 2sqrt(2)(1+i)" and "z_(2)=1+isqrt(3) , then z_(1)^(2)z_(2)^(3) is equal to

For Z_(1)=6sqrt((1-i)/(1+i sqrt(3)));Z_(2)=6sqrt((1-i)/(sqrt(3)+i));Z_(3)=6sqrt((1+i)/(sqrt(3)-i)) which of the following holds good?

If z=(-1)/(2)+i(sqrt(3))/(2) , then 8+10z+7z^(2) is equal to a) -(1)/(2)-i(sqrt(3))/(2) b) (1)/(2)+isqrt(3)/(2) c) -(1)/(2)+i(3sqrt(3))/(2) d) (sqrt(3))/(2)i

Given the complex number z= (-1 + sqrt3i)/(2) and w= (-1- sqrt3i)/(2) (where i= sqrt-1 ) Calculate the modulus and argument of (w)/(z)

Given the complex number z= (-1 + sqrt3i)/(2) and w= (-1- sqrt3i)/(2) (where i= sqrt-1 ) Represent z and w accurately on the complex plane.