Home
Class 8
MATHS
(3xy-2ab)^(3)-(3xy+2ab)^(3)=...

`(3xy-2ab)^(3)-(3xy+2ab)^(3)=`

Promotional Banner

Similar Questions

Explore conceptually related problems

x^(3)x4xy^(2)x(3)/(2)xy^(3)=

Divide: 6x^(4)yz-3xy^(3)z+8x^(2)yz^(2)yz^(4) by 2xyz(2)/(3)a^(2)b^(2)c^(2)+(4)/(3)ab^(2)c^(3)-(1)/(5)ab^(3)c^(2)by(1)/(2)abc

Simplify: 2x^(2)+3xy -3y^(2)+x^(2)-xy+y^(2)

Factorize: x^(3)-2x^(2)y+3xy^(2)-6y^(3)6ab-b^(2)+12ac-2bc

Solution of the differentiable equation x=1+xy((dy)/(dx))+((xy)^(2))/(2!)((dy)/(dx))^(2)+((xy)^(3))/(3!)((dy)/(dx))^(3)+

Add : x^(3) - x^(2)y + 5xy^(2) + y^(3) , -x^(3) - 9xy^(2) + y^(3), 3x^(2)y + 9xy^(2)

The differential equation of all conics whose centre lies at origin, is given by (a) (3xy_(2)+x^(2)y_(3))(y-xy_(1))=3xy_(2)(y-xy_(1)-x^(2)y_(2)) (b) (3xy_(1)+x^(2)y_(2))(y_(1)-xy_(3))=3xy_(1)(y-xy_(2)-x^(2)y_(3)) ( c ) (3xy_(2)+x^(2)y_(3))(y_(1)-xy)=3xy_(1)(y-xy_(1)-x^(2)y_(2)) (d) None of these

The differential equation of all conics whose centre klies at origin, is given by (a) (3xy_(2)+x^(2)y_(3))(y-xy_(1))=3xy_(2)(y-xy_(1)-x^(2)y_(2)) (b) (3xy_(1)+x^(2)y_(2))(y_(1)-xy_(3))=3xy_(1)(y-xy_(2)-x^(2)y_(3)) ( c ) (3xy_(2)+x^(2)y_(3))(y_(1)-xy)=3xy_(1)(y-xy_(1)-x^(2)y_(2)) (d) None of these

The differential equation of all conics whose centre k lies at origin, is given by (a) (3xy_(2)+x^(2)y_(3))(y-xy_(1))=3xy_(2)(y-xy_(1)-x^(2)y_(2)) (b) (3xy_(1)+x^(2)y_(2))(y_(1)-xy_(3))=3xy_(1)(y-xy_(2)-x^(2)y_(3)) ( c ) (3xy_(2)+x^(2)y_(3))(y_(1)-xy)=3xy_(1)(y-xy_(1)-x^(2)y_(2)) (d) None of these