Home
Class 12
MATHS
int(0)^( pi/2)sin2x log(tan x)dx=...

int_(0)^( pi/2)sin2x log(tan x)dx=

Promotional Banner

Similar Questions

Explore conceptually related problems

int_(0)^(pi//2) sin 2x log (tan x) dx is equal to

int_(0)^(pi//2) sin 2x log (tan x) dx is equal to a) π b) π/2 c) 0 d) 2π

The value of int_(0)^((pi)/(2))sin2x log(tanx)dx is equal to -

int_0^(pi/2)sin2x log(tanx)dx

int_(0)^(pi//2) sin 2x log tan x dx is equal to

int_(0)^(pi//2) sin 2x log tan x dx is equal to

Prove that int_(0)^((pi)/(2))sin2x log tan xdx=0

int_(0)^(pi//2) sin 2 x (tan x) dx=

int_(0)^((pi)/(2))sin2x log tan xdx is equal to