Home
Class 10
MATHS
" The number of real roots of "sqrt(5x^(...

" The number of real roots of "sqrt(5x^(2)-6x+8)-sqrt(5x^(2)-6x-7)=1" is: "

Promotional Banner

Similar Questions

Explore conceptually related problems

Solve sqrt(5x^(2)-6x+8)-sqrt(5x^(2)-6x-7)=1

Solve sqrt(5x^2-6x+8)-sqrt(5x^2-6x-7)=1.

Solve sqrt(5x^2-6x+8)-sqrt(5x^2-6x-7)=1.

Solve sqrt(5x^2-6x+8)-sqrt(5x^2-6x-7)=1.

The number of real roots of (7+4sqrt(3))^(|x|- 8)+(7-4sqrt(3))^(|x|-8)=14 is

The number of real roots of x^(10)-x^(7)+x^(5)+2x^(4)+6=0 is

The number of roots of the equation sqrt(x^(2)-4)-(x-2)=sqrt(x^(2)-5x+6) is

The number of real roots of (7+4sqrt(3))^(|x|^(-8))+(7-4sqrt(3))^(|x|-8)=14 is