Home
Class 12
MATHS
The equation of the axes of the ellipse ...

The equation of the axes of the ellipse `25x^(2)+9y^(2)-150x-90y+225=0` are

Promotional Banner

Similar Questions

Explore conceptually related problems

In the ellipse 25x^(2)+9y^(2)-150x-90y+225=0

In the ellipse 25x^(2)+9y^(2)-150x-90y+225=0

The equations of the directrices of the ellipse 25x^(2)+9y^(2)-150x-90y+225=0

Find the centre of the ellipse 25x^(2)+9y^(2)-150x-90y+225=0 .

For the ellipse 25x^(2) +9y^(2)-150x-90y +225 =0 the eccentricity e=

The equations of the directrices of the ellipse 9x^(2) + 25y^(2) = 225 are

Eccentricity of the ellipse 25 x^(2)+9 y^(2)-150 x-90 y+225=0

The vertices of the ellipse 9x^(2) + 25y^(2) - 90x - 150y + 225 = 0 are

Find the equation of the tangent to the ellipse 5x^(2) + 9y^(2) = 45 which are bot to the line 3x + 2y + 7 = 0.