Home
Class 11
MATHS
lim(xrarr0)(logsec(x//2)cosx/(log(secx)c...

`lim_(xrarr0)(log_sec(x//2)cosx/(log_(secx)cos(x /2)))=`

Promotional Banner

Similar Questions

Explore conceptually related problems

lim_(x rarr 0) (log_(sec x//2) cos x)/(log_(sec x)cos x//2) is equal to :

Evaluate: ("Lim")_(x->0)((log)_(secx/2)(cosx))/((log)_(secx)(cos(x//2))) 1 (b) 16 (c) 4 (d) 2

lim_(xrarr0)(x^3 log x)

lim_(xrarr0)(cos 2x-1)/(cosx-1)

lim_(xrarr0)(cos 2x-1)/(cosx-1)

lim_(x=0)(log_(sin x)cos x)/(log_(sin((x)/(2)))cos((x)/(2)))

lim_( xrarr0) (1-cosx)/(x^(2))

lim_( xrarr0) (1-cosx)/(x^(2))

Evaluate the limits: lim_(xrarr0)(cos7x-cos9x)/(cosx-cos5x)