Home
Class 12
MATHS
If A and B are acute positive angles sat...

If A and B are acute positive angles satisfying the equations 3 `"sin"^(2) A + 2"sin"^(2)B =1 " and " 3"sin"2A-2 "sin" 2B = 0, "then " A +2B =`

Promotional Banner

Similar Questions

Explore conceptually related problems

If A and B are acute positive angles satisfying the equations 3 sin^(2)A+2sin^(2) B=1 and 3 sin2A-2 sin 2B=0 , then A+2B is equal to

If A and B are acute positive angles satisfying the equations 3sin^(2)A+2sin^(2)B=1 and 3sin2A-2sin 2B=0 , then A+2B is equal to

If A, B are acute positive angles satisfying the equations 3sin^(2)A+2sin^(2)B=1 and 3sin2A-2sin2B=0 , then find A+2B .

If AandB are acute positive angles satisfying the equations 3sin^(2)A+2sin^(2)B=1 and 3sin2A-2sin2B=0, then A+2B is equal to (a) pi (b) (pi)/(2) (c) (pi)/(4) (d) (pi)/(6)

If Aa n dB are acute positive angles satisfying the equations 3sin^2A+2sin^2B=1 and 3sin2A-2sin2B=0, then A+2B is equal to (a) pi (b) pi/2 (c) pi/4 (d) pi/6

Let 0

Let 0 lt A, B lt (pi)/(2) satisfying the equation 3 sin ^(2) A + 2 sin ^(2) B =1 and 3 sin 2A - 2 sin B =0 then A +2B =

If Aa n dB are acute positive angles satisfying the equations 3sin^2A+2sin^2B=1a n d3sin2A-2sin2B=0,t h e nA+2B is equal to pi (b) pi/2 (c) pi/4 (d) pi/6