Home
Class 12
MATHS
Show that the four points A ,B , Ca n...

Show that the four points `A ,B , Ca n dD` with position vectors ` vec a , vec b , vec c` and ` vec d` respectively are coplanar if and only if `3 vec a-2 vec b+ vec c-2 vec d=0.`

Promotional Banner

Similar Questions

Explore conceptually related problems

Show that the four points A,B,C and D with position vectors vec a,vec b,vec c and vec d respectively are coplanar if and only if 3vec a-2vec b+vec c-2vec d=0

Show that the points A,B,C with position vectors 2vec a+3vec b+5vec c,vec a+2vec b+3vec c and 7vec a-vec c respectively,are collinear.

The vectors vec a,vec b,vec c,vec d are coplanar then

Show that the found points A,B,C,D with position vectors vec a,vec b,vec c,vec d respectively such that 3vec a-2vec b+5vec c-6vec d=vec 0 ,are coplanar .Also,find the position vector of the point of intersection of the line segments AC and BD.

Show that the vectors vec a,vec b,vec c are coplanar if and only if vec a+vec b,vec b+vec c and vec c+vec a are coplanar.

Show that the vectors vec a , vec b and vec c are coplanar if vec a+ vec b , vec b+ vec c and vec c+ vec a are coplanar.

A,B,C and D are four points in a plane with position vectors vec a,vec b,vec c and vec d, respectively,such that (vec a-vec d)*(vec b-vec c)=(vec b-vec d)*(vec c-vec a)=0 Then point D is the of triangle ABC

Show that the vectors vec a, vec b and vec c are coplanar if vec a + vec b, vec b + vec c, vec c+ vec a are coplanar.

Show that vectors vec a ,\ vec b ,\ vec c are coplanar if vec a+ vec b ,\ vec b+ vec c ,\ vec c+ vec a are coplanar.

Show that vectors vec a ,\ vec b ,\ vec c are coplanar if vec a+ vec b ,\ vec b+ vec c ,\ vec c+ vec a are coplanar.