Home
Class 9
MATHS
Facorise: 27a^3-b^3+8c^3+18abc...

Facorise: `27a^3-b^3+8c^3+18abc`

Text Solution

AI Generated Solution

The correct Answer is:
To factorise the expression \(27a^3 - b^3 + 8c^3 + 18abc\), we can follow these steps: ### Step 1: Rearrange the expression First, let's rearrange the expression to group similar terms: \[ 27a^3 + 18abc + 8c^3 - b^3 \] ### Step 2: Identify the terms We can identify the terms as follows: - \(A = 27a^3\) - \(B = -b^3\) - \(C = 8c^3\) - \(D = 18abc\) ### Step 3: Recognize the form Notice that the expression resembles the form of a polynomial that can be factored using the identity for the sum of cubes and the product of three terms: \[ A + B + C - 3abc \] where \(A = (3a)^3\), \(B = (-b)^3\), and \(C = (2c)^3\). ### Step 4: Apply the factorization formula Using the identity: \[ x^3 + y^3 + z^3 - 3xyz = (x + y + z)(x^2 + y^2 + z^2 - xy - xz - yz) \] we can substitute: - \(x = 3a\) - \(y = -b\) - \(z = 2c\) ### Step 5: Calculate \(x + y + z\) Calculate: \[ x + y + z = 3a - b + 2c \] ### Step 6: Calculate \(x^2 + y^2 + z^2 - xy - xz - yz\) Now calculate: \[ x^2 = (3a)^2 = 9a^2 \] \[ y^2 = (-b)^2 = b^2 \] \[ z^2 = (2c)^2 = 4c^2 \] \[ xy = (3a)(-b) = -3ab \] \[ xz = (3a)(2c) = 6ac \] \[ yz = (-b)(2c) = -2bc \] Now combine these: \[ x^2 + y^2 + z^2 - xy - xz - yz = 9a^2 + b^2 + 4c^2 - (-3ab) - 6ac - (-2bc) \] This simplifies to: \[ 9a^2 + b^2 + 4c^2 + 3ab - 6ac + 2bc \] ### Step 7: Write the final factorization Thus, the complete factorization of the expression is: \[ (3a - b + 2c)(9a^2 + b^2 + 4c^2 + 3ab - 6ac + 2bc) \] ### Final Answer The factorized form of \(27a^3 - b^3 + 8c^3 + 18abc\) is: \[ (3a - b + 2c)(9a^2 + b^2 + 4c^2 + 3ab - 6ac + 2bc) \]
Promotional Banner

Topper's Solved these Questions

  • FACTORISATION OF POLYNOMIALS

    RS AGGARWAL|Exercise Multiple Choice Questions (Mcq)|22 Videos
  • FACTORISATION OF POLYNOMIALS

    RS AGGARWAL|Exercise Exercise 3F|38 Videos
  • COORDINATE GEOMETRY

    RS AGGARWAL|Exercise Multiple Choice Questions (Mcq)|22 Videos
  • GEOMETRICAL CONSTRUCTIONS

    RS AGGARWAL|Exercise Exercise 13|2 Videos

Similar Questions

Explore conceptually related problems

Facorise: 216 +27b^3+8c^3-108bc

27a^3+64b^3

Facorise: 125a^3+b^3+64c^3-60abc

Facorise: a^3+8b^3+64c^3-24abc

Facorise: 8-27b^3-343c^3-126bc

Facorise: 1+b^3+8c^3-6bc

Facorise: 8a^3+125b^3-64c^3+120abc

Factorize: 27a^(3)+125b^(3)

Factorise: 18a ^(3) b^(3) - 27a ^(2) b^(3) + 36 a ^(3)b ^(2)

Factorise : a^(3) +8/27 b^(3)