Home
Class 9
MATHS
2sqrt(2)a^3+3sqrt(3)b^3+c^3-3sqrt(6)abc...

`2sqrt(2)a^3+3sqrt(3)b^3+c^3-3sqrt(6)abc`

Text Solution

AI Generated Solution

The correct Answer is:
To factor the polynomial \(2\sqrt{2}a^3 + 3\sqrt{3}b^3 + c^3 - 3\sqrt{6}abc\), we can use the identity for the sum of cubes. The identity states: \[ x^3 + y^3 + z^3 - 3xyz = (x + y + z)(x^2 + y^2 + z^2 - xy - yz - zx) \] ### Step-by-Step Solution: 1. **Identify the terms**: We have the expression \(2\sqrt{2}a^3 + 3\sqrt{3}b^3 + c^3 - 3\sqrt{6}abc\). 2. **Rewrite the terms**: We can express \(2\sqrt{2}a^3\) as \((\sqrt[3]{2\sqrt{2}}a)^3\), \(3\sqrt{3}b^3\) as \((\sqrt[3]{3\sqrt{3}}b)^3\), and \(c^3\) remains as is. We need to express \(-3\sqrt{6}abc\) in a similar form. 3. **Express \(-3\sqrt{6}abc\)**: We can rewrite \(-3\sqrt{6}abc\) as \(-3(\sqrt{2}a)(\sqrt{3}b)(c)\). 4. **Assign variables**: Let: - \(x = \sqrt[3]{2\sqrt{2}}a\) - \(y = \sqrt[3]{3\sqrt{3}}b\) - \(z = c\) 5. **Apply the identity**: Now we can apply the identity: \[ x^3 + y^3 + z^3 - 3xyz = (x + y + z)(x^2 + y^2 + z^2 - xy - yz - zx) \] 6. **Calculate \(x + y + z\)**: \[ x + y + z = \sqrt[3]{2\sqrt{2}}a + \sqrt[3]{3\sqrt{3}}b + c \] 7. **Calculate \(x^2 + y^2 + z^2\)**: \[ x^2 = (\sqrt[3]{2\sqrt{2}}a)^2 = \frac{2\sqrt{2}}{3}a^2 \] \[ y^2 = (\sqrt[3]{3\sqrt{3}}b)^2 = \frac{3\sqrt{3}}{3}b^2 \] \[ z^2 = c^2 \] 8. **Calculate \(xy, yz, zx\)**: \[ xy = \sqrt[3]{2\sqrt{2}}a \cdot \sqrt[3]{3\sqrt{3}}b = \sqrt[3]{6\sqrt{6}}ab \] \[ yz = \sqrt[3]{3\sqrt{3}}b \cdot c \] \[ zx = \sqrt[3]{2\sqrt{2}}a \cdot c \] 9. **Combine the results**: Substitute these values into the identity to get the factorization: \[ (x + y + z)(x^2 + y^2 + z^2 - xy - yz - zx) \] 10. **Final expression**: The final factorized form will be: \[ \left(\sqrt[3]{2\sqrt{2}}a + \sqrt[3]{3\sqrt{3}}b + c\right) \left(\text{remaining terms}\right) \]
Promotional Banner

Topper's Solved these Questions

  • FACTORISATION OF POLYNOMIALS

    RS AGGARWAL|Exercise Multiple Choice Questions (Mcq)|22 Videos
  • FACTORISATION OF POLYNOMIALS

    RS AGGARWAL|Exercise Exercise 3F|38 Videos
  • COORDINATE GEOMETRY

    RS AGGARWAL|Exercise Multiple Choice Questions (Mcq)|22 Videos
  • GEOMETRICAL CONSTRUCTIONS

    RS AGGARWAL|Exercise Exercise 13|2 Videos

Similar Questions

Explore conceptually related problems

2sqrt(2)a^(3)+16sqrt(2)b^(3)+c^(3)-12abc

Factorise 2sqrt(2)a^(3)+8b^(3)-24c^(3)+18sqrt(2)abc

Factorize: 2sqrt(2)a^(3)+8b^(3)-27c^(3)+18sqrt(2)abc

Factorise (i) a^(3)+8b^(3)+64c^(3)-24abc (ii) 2sqrt(2)a^(3)+8b^(3)-27c^(3)+18sqrt(2)abc

Factorize: 2sqrt(2)a^(3)+16sqrt(2)b^(3)+c^(3)-12abc

Factorize: 3sqrt(3)a^(3)-b^(3)-5sqrt(5)c^(3)-3sqrt(15)abc

(i) 3sqrt(5) by 2sqrt(5) ,(ii) 6sqrt(15) by 4sqrt(3) , (iii) 2sqrt(6) by 3sqrt(3) (iv) 3sqrt(8) by 3sqrt(2) ,(v) sqrt(10) by sqrt(40) , (vi) 3sqrt(28) by 2sqrt(7)

Factorize : 2sqrt(2)x^(3)+3sqrt(3)y^(3)+sqrt(5)(5-3sqrt(6)xy)

Find a and b if both a and b are rational.(sqrt(2)+sqrt(3))/(3sqrt(2)-2sqrt(3))=a-b sqrt(6)

If a=2+sqrt(3)+sqrt(5) and b=3+sqrt(3)-sqrt(5) , then a^(2)+b^(2)-4a-6b-3 is equal to