Home
Class 9
MATHS
(a-b)^3+(b-c)^3+(c-a)^3...

`(a-b)^3+(b-c)^3+(c-a)^3`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \((a-b)^3 + (b-c)^3 + (c-a)^3\), we can use a known algebraic identity. Here’s a step-by-step solution: ### Step 1: Recognize the Identity We can use the identity for the sum of cubes: \[ x^3 + y^3 + z^3 - 3xyz = (x+y+z)(x^2 + y^2 + z^2 - xy - xz - yz) \] In our case, let: - \(x = a - b\) - \(y = b - c\) - \(z = c - a\) ### Step 2: Calculate \(x + y + z\) Now, we calculate: \[ x + y + z = (a - b) + (b - c) + (c - a) \] Notice that all terms cancel out: \[ x + y + z = a - b + b - c + c - a = 0 \] ### Step 3: Apply the Identity Since \(x + y + z = 0\), we can simplify the expression: \[ x^3 + y^3 + z^3 = 3xyz \] Thus, we need to find \(xyz\): \[ xyz = (a-b)(b-c)(c-a) \] ### Step 4: Substitute Back Now substituting back, we have: \[ (a-b)^3 + (b-c)^3 + (c-a)^3 = 3(a-b)(b-c)(c-a) \] ### Final Answer The final result is: \[ (a-b)^3 + (b-c)^3 + (c-a)^3 = 3(a-b)(b-c)(c-a) \]
Promotional Banner

Topper's Solved these Questions

  • FACTORISATION OF POLYNOMIALS

    RS AGGARWAL|Exercise Multiple Choice Questions (Mcq)|22 Videos
  • FACTORISATION OF POLYNOMIALS

    RS AGGARWAL|Exercise Exercise 3F|38 Videos
  • COORDINATE GEOMETRY

    RS AGGARWAL|Exercise Multiple Choice Questions (Mcq)|22 Videos
  • GEOMETRICAL CONSTRUCTIONS

    RS AGGARWAL|Exercise Exercise 13|2 Videos

Similar Questions

Explore conceptually related problems

(3a-2b)^3+(2b-5c)^3+(5c-3a)^3

11. If a, b,c in R-{0}, such that a!=b!=c, then the matrix [[0,(a-b)^3,(a-c)^3],[(b-a)^3,0,(b-c)^3],[[c-a)^3,(c-b)^3,0]] is (A) symmetric (B) singular (C) non-singular (D) invertible

Factorize: (a-3b)^(3)+(3b-c)^(3)+(c-a)^(3)

If (a-b)=3,(b-c)=5 and (c-a)=1 then the value of (a^(3)+b^(3)+c^(3)-3abc)/(a+b+c) is?

If (a-b) =3, (b-c)=5 and (c-a)=1 then what is the value of (a^(3)+b^(3)+c^(3)-3abc)/(a+b+c) ?

a^3(b-c)^3+b^3(c-a)^3+c^3(a-b)^3