Home
Class 9
MATHS
(3a-2b)^3+(2b-5c)^3+(5c-3a)^3...

`(3a-2b)^3+(2b-5c)^3+(5c-3a)^3`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \((3a-2b)^3+(2b-5c)^3+(5c-3a)^3\), we can use the identity for the sum of cubes. Here are the steps to arrive at the solution: ### Step 1: Identify the variables Let: - \( A = 3a - 2b \) - \( B = 2b - 5c \) - \( C = 5c - 3a \) ### Step 2: Check the sum \( A + B + C \) Now, we need to check if \( A + B + C = 0 \): \[ A + B + C = (3a - 2b) + (2b - 5c) + (5c - 3a) \] Combine the terms: \[ = 3a - 2b + 2b - 5c + 5c - 3a = 0 \] Thus, \( A + B + C = 0 \). ### Step 3: Use the sum of cubes identity We can use the identity: \[ A^3 + B^3 + C^3 - 3ABC = (A + B + C)(A^2 + B^2 + C^2 - AB - AC - BC) \] Since \( A + B + C = 0 \), we have: \[ A^3 + B^3 + C^3 = 3ABC \] ### Step 4: Calculate \( ABC \) Now, we need to calculate \( ABC \): \[ ABC = (3a - 2b)(2b - 5c)(5c - 3a) \] ### Step 5: Expand \( ABC \) To find \( ABC \), we can expand it step by step. First, calculate \( (3a - 2b)(2b - 5c) \): \[ = 3a(2b) + 3a(-5c) - 2b(2b) - 2b(-5c) = 6ab - 15ac - 4b^2 + 10bc \] Now multiply this result by \( (5c - 3a) \): \[ = (6ab - 15ac - 4b^2 + 10bc)(5c - 3a) \] Distributing each term: \[ = 6ab(5c) - 6ab(3a) - 15ac(5c) + 15ac(3a) - 4b^2(5c) + 4b^2(3a) + 10bc(5c) - 10bc(3a) \] Combine like terms to find the final expression for \( ABC \). ### Step 6: Final Expression After calculating \( ABC \), substitute it back into the equation: \[ A^3 + B^3 + C^3 = 3ABC \] This gives us the final result for the original expression.
Promotional Banner

Topper's Solved these Questions

  • FACTORISATION OF POLYNOMIALS

    RS AGGARWAL|Exercise Multiple Choice Questions (Mcq)|22 Videos
  • FACTORISATION OF POLYNOMIALS

    RS AGGARWAL|Exercise Exercise 3F|38 Videos
  • COORDINATE GEOMETRY

    RS AGGARWAL|Exercise Multiple Choice Questions (Mcq)|22 Videos
  • GEOMETRICAL CONSTRUCTIONS

    RS AGGARWAL|Exercise Exercise 13|2 Videos

Similar Questions

Explore conceptually related problems

If (a)/(b)=(4)/(3), then (3a+2b)/(3a-2b)=?( a) -1 (b) 3 (c) 5(d)6

Factorize the following 3,a+b+c,a^(3)+b^(3)+c^(3)a+b+c,a^(2)+b^(2)+c^(2),a^(4)+b^(4)+c^(4)a^(2)+b^(2)+c^(2),a^(3)+b^(3)+c^(3),a^(5)+b^(5)+c^(5)]|

Show that the points P(a+2b+c),Q(a-b-c),R(3a+b+2c) and S(5a+3b+5c) are coplanar given that a,b and c are non-coplanar.

If a,b,c are real numbers such that a+b+c=0 and a^(2)+b^(2)+c^(2)=1, then (3a+5b-8c)^(2)+(-8a+3b+5c)^(2)+(5a-8b+3c)^(2) is equal to

If (3a+5b):(3a-5b): :(3c+5d):(3c-5d) , then show that a,b,c and d are in proportion.

The square root of (3a + 2b + 3c)^(2) - (2a + 3b + 2c)^(2) + 5b^(2) is

Find the LCM of 14a^2b^3c^4, 20ab^3c^3 and a^5b^4 .