Home
Class 9
MATHS
a^3(b-c)^3+b^3(c-a)^3+c^3(a-b)^3...

`a^3(b-c)^3+b^3(c-a)^3+c^3(a-b)^3`

A

`3abc`

B

`3abc(b-c)(c-a)(a-b)`

C

`3(b-c)(c-a)(a-b)`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To simplify the expression \( a^3(b-c)^3 + b^3(c-a)^3 + c^3(a-b)^3 \), we can follow these steps: ### Step 1: Recognize the structure of the expression The expression consists of three terms, each involving a cube of a variable multiplied by the cube of a difference of the other two variables. ### Step 2: Factor out common terms Notice that each term can be factored in a way that highlights the symmetry. We can rewrite the expression as: \[ a^3(b-c)^3 + b^3(c-a)^3 + c^3(a-b)^3 \] ### Step 3: Use the identity for sum of cubes We can use the identity for the sum of cubes: \[ x^3 + y^3 + z^3 - 3xyz = (x+y+z)(x^2 + y^2 + z^2 - xy - xz - yz) \] where \( x = a(b-c) \), \( y = b(c-a) \), and \( z = c(a-b) \). ### Step 4: Set up the expression for \( x+y+z \) Calculate \( x+y+z \): \[ x + y + z = a(b-c) + b(c-a) + c(a-b) \] This simplifies to: \[ = ab - ac + bc - ab + ca - bc = 0 \] ### Step 5: Apply the identity Since \( x + y + z = 0 \), we can apply the identity: \[ x^3 + y^3 + z^3 = 3xyz \] Thus, we have: \[ a^3(b-c)^3 + b^3(c-a)^3 + c^3(a-b)^3 = 3(a(b-c))(b(c-a))(c(a-b)) \] ### Step 6: Final expression Now we can write the final expression as: \[ = 3abc(b-c)(c-a)(a-b) \] ### Final Answer The simplified expression is: \[ 3abc(b-c)(c-a)(a-b) \] ---

To simplify the expression \( a^3(b-c)^3 + b^3(c-a)^3 + c^3(a-b)^3 \), we can follow these steps: ### Step 1: Recognize the structure of the expression The expression consists of three terms, each involving a cube of a variable multiplied by the cube of a difference of the other two variables. ### Step 2: Factor out common terms Notice that each term can be factored in a way that highlights the symmetry. We can rewrite the expression as: \[ ...
Promotional Banner

Topper's Solved these Questions

  • FACTORISATION OF POLYNOMIALS

    RS AGGARWAL|Exercise Multiple Choice Questions (Mcq)|22 Videos
  • FACTORISATION OF POLYNOMIALS

    RS AGGARWAL|Exercise Exercise 3F|38 Videos
  • COORDINATE GEOMETRY

    RS AGGARWAL|Exercise Multiple Choice Questions (Mcq)|22 Videos
  • GEOMETRICAL CONSTRUCTIONS

    RS AGGARWAL|Exercise Exercise 13|2 Videos

Similar Questions

Explore conceptually related problems

(a-b)^3+(b-c)^3+(c-a)^3

What is the value of the expression ? ((a-b)^(3)+(b-c)^(3)+(c-a)^(3))/(3(a-b)(b-c)(c-a))=?

The expression (a-b)^(3)+(b-c)^(3)+(c-a)^(3) can be factorized as (a)(a-b)(b-c)(c-a)(b)3(a-b)(b-c)(c-a)(c)-3(a-b)(b-c)(c-a)(d)(a+b+c)(a^(2)+b^(2)+c^(2)-ab-bc-ca)

If a,b,c are real and distinct numbers,then the value of ((a-b)^(3)+(b-c)^(3)+(c-a)^(3))/((a-b)(b-c)*(c-a)) is

If a+b+c=8 , then value of (a-4)^(3) +(b-3)^(3) +(c-1)^(3)-3(a-4) (b-3) (c-1) is

The value of [(a^2-b^2)^3+(b^2-c^2)^3 + (c^2-a^2)^3] div [(a-b)^3+(b-c)^3+(c-a)^3 ] is equal to: (Given a ne b ne c ) [(a^2-b^2)^3+(b^2-c^2)^3 + (c^2-a^2)^3] div [(a-b)^3+(b-c)^3+(c-a)^3 ] का मान बराबर है: ( a ne b ne c दिया)

If a,b,c are real and distinct nubmer , then the value of ((a -b)^(3) + (b - c)^(3) + (c -a)^(3))/((a - b)(b - c)(c - a)) is