Home
Class 9
MATHS
Prove that :(a+b+c)^3-a^3-b^3-c^3=3(a+b)...

Prove that `:(a+b+c)^3-a^3-b^3-c^3=3(a+b)(b+c)(c+a)`

Promotional Banner

Topper's Solved these Questions

  • FACTORISATION OF POLYNOMIALS

    RS AGGARWAL|Exercise Multiple Choice Questions (Mcq)|22 Videos
  • FACTORISATION OF POLYNOMIALS

    RS AGGARWAL|Exercise Exercise 3F|38 Videos
  • COORDINATE GEOMETRY

    RS AGGARWAL|Exercise Multiple Choice Questions (Mcq)|22 Videos
  • GEOMETRICAL CONSTRUCTIONS

    RS AGGARWAL|Exercise Exercise 13|2 Videos

Similar Questions

Explore conceptually related problems

Prove that (a+b+c)^(3) =a^(3)+b^(3)+c^(3)+3(b+c) (c+a) (a+b)

Prove that : (a+b)^(3)+(b+c)^(3)+(c+a)^(3)-3(a+b)(b+c)(c+a)=2(a^(3)+b^(3)+c^(3)-3abc)

If 2s=a+b+c, prove that (s-a)^(3)+(s-b)^(3)+(s-c)^(3)-3(s-a)(s-b)(s-c)=(1)/(2)(a^(3)+b^(3)+c^(3)-3abc)

Prove: |a^3 2a b^3 2b c^3 2c|=2(a-b)(b-c)(c-a)(a+b+c)

Prove that a^(3)+b^(3)+c^(3)-3abc=(1)/(2)(a+b+c){(a-b)^(2)+(b-c)^(2)+(c-a)^(2)}

Prove that: a^(3)+b^(3)+c^(3)-3abc=(1)/(2)(a+b+c){a-b)^(2)+(b-c)^(2)+(c-a)^(2)}

Using the property of determinants and without expanding prove that abs([1,1,1],[a,b,c],[a^3,b^3,c^3])=(a-b)(b-c)(c-a)(a+b+c)

If a,b,c are in A.P.,prove that 8b^(3)-a^(3)-c^(3)=3ac(a+c)

Prove that |(a+b, b, c), (b+c, c, a), (c+a, a, b)| = 3abc - a^3-b^3-c^3.

Using properties of determinants. Prove that |3a-a+b-a+c-b+a3b-b+c-c+a-c+b3c|=3(a+b+c)(a b+b c+c a)