Home
Class 9
MATHS
If a+b+c=0 then (a^3+b^3+c^3) is...

If `a+b+c=0` then ` (a^3+b^3+c^3)` is

A

0

B

abc

C

2abc

D

3abc

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( a^3 + b^3 + c^3 \) given that \( a + b + c = 0 \). ### Step-by-Step Solution: 1. **Start with the identity**: We know the identity for the sum of cubes: \[ a^3 + b^3 + c^3 - 3abc = (a + b + c)(a^2 + b^2 + c^2 - ab - ac - bc) \] 2. **Substitute the given value**: Since we are given that \( a + b + c = 0 \), we can substitute this into the identity: \[ a^3 + b^3 + c^3 - 3abc = 0 \cdot (a^2 + b^2 + c^2 - ab - ac - bc) \] 3. **Simplify the equation**: The right side of the equation becomes zero: \[ a^3 + b^3 + c^3 - 3abc = 0 \] This simplifies to: \[ a^3 + b^3 + c^3 = 3abc \] 4. **Final result**: Therefore, we conclude that: \[ a^3 + b^3 + c^3 = 3abc \] ### Conclusion: Thus, if \( a + b + c = 0 \), then \( a^3 + b^3 + c^3 = 3abc \).

To solve the problem, we need to find the value of \( a^3 + b^3 + c^3 \) given that \( a + b + c = 0 \). ### Step-by-Step Solution: 1. **Start with the identity**: We know the identity for the sum of cubes: \[ a^3 + b^3 + c^3 - 3abc = (a + b + c)(a^2 + b^2 + c^2 - ab - ac - bc) ...
Promotional Banner

Topper's Solved these Questions

  • FACTORISATION OF POLYNOMIALS

    RS AGGARWAL|Exercise Exercise 3G|25 Videos
  • COORDINATE GEOMETRY

    RS AGGARWAL|Exercise Multiple Choice Questions (Mcq)|22 Videos
  • GEOMETRICAL CONSTRUCTIONS

    RS AGGARWAL|Exercise Exercise 13|2 Videos

Similar Questions

Explore conceptually related problems

If a+b+c = 0,then (a^3+b^3+c^3)^2 = ?

If a+b+c=0 , then (a^(3) + b^(3) + c^(3) ) div (abc) is equal to

Condition identitiy : If a+b+c=0 then a^(3)+b^(3)+c^(3)=3abc

If (a+b+c)=0, then a^(3)+b^(3)+c^(3)=3abc Find the value of (x-y)^(3)+(y-z)^(3)+(z-x)^(3)

If a+b+c= 0 find a^(3) + b^(3) + c^(3) + 3abc

If a+b +c =0 then value of a^(3) +b^(3) +c^(3) is

If a b c = 0, then ({(x^a)^b}^c)/({(x^b)^c}^a) = (a)3 (b) 0 (c) -1 (d) 1

If a + b + c = 0 , then the value of a^3 + b^3 + c^3 is :