Home
Class 9
MATHS
If a+b+c=0 then ((a^2)/(bc)+(b^2)/(ca)+(...

If `a+b+c=0` then `((a^2)/(bc)+(b^2)/(ca)+(c^2)/(ab))=?`

A

`1`

B

`0`

C

`-1`

D

`3`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of the expression \(\frac{a^2}{bc} + \frac{b^2}{ca} + \frac{c^2}{ab}\) given that \(a + b + c = 0\). ### Step-by-Step Solution: 1. **Start with the given condition**: \[ a + b + c = 0 \] 2. **Rewrite the expression**: We need to simplify the expression: \[ \frac{a^2}{bc} + \frac{b^2}{ca} + \frac{c^2}{ab} \] 3. **Find a common denominator**: The common denominator for the fractions is \(abc\). Therefore, we can rewrite the expression as: \[ \frac{a^2 \cdot a}{abc} + \frac{b^2 \cdot b}{abc} + \frac{c^2 \cdot c}{abc} = \frac{a^3 + b^3 + c^3}{abc} \] 4. **Use the identity for the sum of cubes**: We can use the identity: \[ a^3 + b^3 + c^3 - 3abc = (a + b + c)(a^2 + b^2 + c^2 - ab - ac - bc) \] Since \(a + b + c = 0\), it simplifies to: \[ a^3 + b^3 + c^3 = 3abc \] 5. **Substitute back into the expression**: Now we can substitute \(a^3 + b^3 + c^3\) into our expression: \[ \frac{a^3 + b^3 + c^3}{abc} = \frac{3abc}{abc} \] 6. **Simplify the expression**: This simplifies to: \[ 3 \] ### Final Answer: \[ \frac{a^2}{bc} + \frac{b^2}{ca} + \frac{c^2}{ab} = 3 \]

To solve the problem, we need to find the value of the expression \(\frac{a^2}{bc} + \frac{b^2}{ca} + \frac{c^2}{ab}\) given that \(a + b + c = 0\). ### Step-by-Step Solution: 1. **Start with the given condition**: \[ a + b + c = 0 \] ...
Promotional Banner

Topper's Solved these Questions

  • FACTORISATION OF POLYNOMIALS

    RS AGGARWAL|Exercise Exercise 3G|25 Videos
  • COORDINATE GEOMETRY

    RS AGGARWAL|Exercise Multiple Choice Questions (Mcq)|22 Videos
  • GEOMETRICAL CONSTRUCTIONS

    RS AGGARWAL|Exercise Exercise 13|2 Videos

Similar Questions

Explore conceptually related problems

if a+b+c = 0, then ((2a^2)/(3bc)+ (2b^2)/(3ca)+(2c^2)/(3ab)) is equal to: यदि a+b+c = 0 है, तो ((2a^2)/(3bc)+ (2b^2)/(3ca)+(2c^2)/(3ab)) बराबर है :

If a,b,c are all non zero and a+b+c=0 , prove that (a^2)/(bc)+(b^2)/(ca)+(c^2)/(ab)=3 .

If a+b+c = 0 find (a^(2))/(bc) + (b^(2))/(ca) + (c^(2))/(ab)= ?

If a,b,c are all non-zero and a+b+c=0 prove that (a^(2))/(bc)+(b^(2))/(ca)+(c^(2))/(ab)=3

If a+b+c=0, the value of ((a^(2))/(bc)+(b^(2))/(ca)+(c^(2))/(ab)) is

If a+b+c=0, the value of (a^(2))/(bc)+(b^(2))/(ca)+(c^(2))/(ab) is 3abc(b)(1)/(3)(c)1(d)3

If a^(2) +b^(2) +c^(2) = ab + bc + ca then (a+b)/(c ) + (b+c)/(a) + (c+a)/(b) =?