Home
Class 9
MATHS
If x+y+z=9 and xy+yz+zx=23, the value of...

If `x+y+z=9` and `xy+yz+zx=23`, the value of `(x^3+y^3+z^3-3xyz)=? `

A

108

B

207

C

669

D

729

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( x^3 + y^3 + z^3 - 3xyz \) given the equations \( x + y + z = 9 \) and \( xy + yz + zx = 23 \). ### Step-by-Step Solution: 1. **Use the identity for \( x^3 + y^3 + z^3 - 3xyz \)**: The formula we will use is: \[ x^3 + y^3 + z^3 - 3xyz = (x + y + z) \left( (x + y + z)^2 - 3(xy + yz + zx) \right) \] 2. **Substitute the known values**: We know: \[ x + y + z = 9 \quad \text{and} \quad xy + yz + zx = 23 \] Substitute these values into the formula: \[ x^3 + y^3 + z^3 - 3xyz = 9 \left( 9^2 - 3 \times 23 \right) \] 3. **Calculate \( 9^2 \)**: \[ 9^2 = 81 \] 4. **Calculate \( 3 \times 23 \)**: \[ 3 \times 23 = 69 \] 5. **Substitute these results back into the equation**: \[ x^3 + y^3 + z^3 - 3xyz = 9 \left( 81 - 69 \right) \] 6. **Calculate \( 81 - 69 \)**: \[ 81 - 69 = 12 \] 7. **Multiply by 9**: \[ x^3 + y^3 + z^3 - 3xyz = 9 \times 12 = 108 \] ### Final Answer: Thus, the value of \( x^3 + y^3 + z^3 - 3xyz \) is \( \boxed{108} \).

To solve the problem, we need to find the value of \( x^3 + y^3 + z^3 - 3xyz \) given the equations \( x + y + z = 9 \) and \( xy + yz + zx = 23 \). ### Step-by-Step Solution: 1. **Use the identity for \( x^3 + y^3 + z^3 - 3xyz \)**: The formula we will use is: \[ x^3 + y^3 + z^3 - 3xyz = (x + y + z) \left( (x + y + z)^2 - 3(xy + yz + zx) \right) ...
Promotional Banner

Topper's Solved these Questions

  • FACTORISATION OF POLYNOMIALS

    RS AGGARWAL|Exercise Exercise 3G|25 Videos
  • COORDINATE GEOMETRY

    RS AGGARWAL|Exercise Multiple Choice Questions (Mcq)|22 Videos
  • GEOMETRICAL CONSTRUCTIONS

    RS AGGARWAL|Exercise Exercise 13|2 Videos

Similar Questions

Explore conceptually related problems

If x+y+z=8 and xy+yz+zx=20 find the value of x^(3)+y^(3)+z^(3)-3xyz

If x+y+z=2, xy+yz+zx= 11, then the value of x^3 +y^3 +z^3 - 3xyz is: यदि x+y+z=2, है, xy+yz+zx= 11 है तो x^3 +y^3 +z^3 - 3xyz का मान होगाः

If (x+y+z)=6 and (xy+yz+zx)=11 , then the value of (x^(3)+y^(3)+z^(3)-3xyz) is :

If x+y+z=10 and xy+yz+zx = 15, then find the value of x^3+y^3+z^3-3xyz . यदि x+y+z=10 and xy+yz+zx = 15 है, तो x^3+y^3+z^3-3xyz का मान ज्ञात करें ।

If x+y+z=7,xy+yz+zx=12 , find the value of x^(3)+y^(3)+z^(3)-3xyz .

If x+y+z=2, xy+yz+zx=-11, then the value of x^3+y^3+z^3-3xyz is : यदि x+y+z=2, xy+yz+zx=-11 है ,तो x^3+y^3+z^3-3xyz का मान ज्ञात करें |

If x+y+z=19, xyz=216 and xy+yz+zx=114, then the value of sqrt(x^3 + y^3 + z^3 + xyz) is:

If x + y + z = 19, xy + yz + zx = 114, then the value of sqrt(x^3+y^3+z^3-3xyz) is: यदि x + y + z = 19, xy + yz + zx = 114 है, तो sqrt(x^3+y^3+z^3-3xyz) का मान क्या होगा ?

If x + y + z = 19, xyz= 216 and xy + zx + yx = 114, then the value of x^3+y^3+z^3+xyz is : यदि x + y + z = 19, xyz= 216 और xy + zx + yx = 114, तो x^3+y^3+z^3+xyz का मान क्या होगा