Home
Class 12
MATHS
The indefinite integral I=int(sec^(2)xta...

The indefinite integral `I=int(sec^(2)xtanx(secx+tanx)dx)/((sec^(5)x+sec^(2)xtan^(3)x-sec^(3)x tan^(2)x-tan^(5)x))` simplifies to `(1)/(3)ln |f(x)|+c`, where `f((pi)/(4))=2sqrt2+1` and c is the constant of integration. If the value of `f((pi)/(3))` is `a+sqrtb`, then the value of `b-3a` is equal to

Promotional Banner

Similar Questions

Explore conceptually related problems

The integral int(sec^2x)/(3+4tan x)dx

Integrate : int(sec^(2)x)/(a+b tan x)dx

Integrate : int(sec^(2)x)/(sqrt(1+tan x))dx

Integrate int sec xtanx.sqrt(tan^2x-3).dx

If the integral int(lnx)/(x^(3))dx=(f(x))/(4x^(2))+C , where f(e )=-3 and C is the constant of integration, then the value of f(e^(2)) is equal to

If the integral int(lnx)/(x^(3))dx=(f(x))/(4x^(2))+C , where f(e )=-3 and C is the constant of integration, then the value of f(e^(2)) is equal to

Let int(x^(2)-1)/(x^(3)sqrt(3x^(4)+2x^(2)-1))dx=f(x)+c where f(1)=-1 and c is the constant of integration.

Evalute the following integrals int (sec^(2) "x tan x")/(sec^(2) x + tan^(2) x) dx

int(4sec^(2)x tan x)/(sec^(2)x+tan^(2)x)dx=log|1+f(x)|+C

If the integral I=inte^(x^(2))x^(3)dx=e^(x^(2))f(x)+c , where c is the constant of integration and f(1)=0 , then the value of f(2) is equal to