Home
Class 11
MATHS
If tan821/2^@=sqrt(lambda1)+sqrt(lambda2...

If `tan82``1/2^@=sqrt(lambda_1)+sqrt(lambda_2)+sqrt(lambda_3)+2`, then `lambda_1+lambda_2+lambda_3` is equal to

Promotional Banner

Similar Questions

Explore conceptually related problems

Two particle are moving perpendicular to each with de-Broglie wave length lambda_(1) and lambda_(2) . If they collide and stick then the de-Broglie wave length of system after collision is : (A) lambda = (lambda_(1) lambda_(2))/(sqrt(lambda_(1)^(2) + lambda_(2)^(2))) (B) lambda = (lambda_(1))/(sqrt(lambda_(1)^(2) + lambda_(2)^(2))) (C) lambda = (sqrt(lambda_(1)^(2) + lambda_(2)^(2)))/(lambda_(2)) (D) lambda = (lambda_(1) lambda_(2))/(sqrt(lambda_(1) + lambda_(2)))

Two particle are moving perpendicular to each with de-Broglie wave length lambda_(1) and lambda_(2) . If they collide and stick then the de-Broglie wave length of system after collision is : (A) lambda = (lambda_(1) lambda_(2))/(sqrt(lambda_(1)^(2) + lambda_(2)^(2))) (B) lambda = (lambda_(1))/(sqrt(lambda_(1)^(2) + lambda_(2)^(2))) (C) lambda = (sqrt(lambda_(1)^(2) + lambda_(2)^(2)))/(lambda_(2)) (D) lambda = (lambda_(1) lambda_(2))/(sqrt(lambda_(1) + lambda_(2)))

Transition between three energy energy levels in a particular atom give rise to three Spectral line of wevelength , in increasing magnitudes. lambda_(1), lambda_(2) and lambda_(3) . Which one of the following equations correctly ralates lambda_(1), lambda_(2) and lambda_(3) ? lambda_(1)=lambda_(2)-lambda_(3) lambda_(1)=lambda_(3)-lambda_(2) (1)/(lambda_(1))=(1)/(lambda_(2))+(1)/(lambda_(3)) (1)/(lambda_(2))=(1)/(lambda_(3))+(1)/(lambda_(1))

Show that the area of the triangle with vertices (lambda, lambda-2), (lambda+3, lambda) and (lambda+2, lambda+2) is independent of lambda .

Show that the area of the triangle with vertices (lambda, lambda-2), (lambda+3, lambda) and (lambda+2, lambda+2) is independent of lambda .

Show that the area of the triangle with vertices (lambda, lambda-2), (lambda+3, lambda) and (lambda+2, lambda+2) is independent of lambda .

Show that the area of the triangle with vertices (lambda, lambda-2), (lambda+3, lambda) and (lambda+2, lambda+2) is independent of lambda .

int (dx)/sqrt(1-tan^2 x)=1/lambda sin^-1 (lambdasinx)+C ,then lambda=

If the two roots of the equation (lambda-2)(x^2+x+1)^2-(lambda+2)(x^4+x^2+1) are real and equal for lambda=lambda_1,lambda_2 then lambda_1+lambda_2=0 (b) |lambda_1-lambda_2|=6 (c) lambda_1+lambda_2=32 (d) all of these

If the two roots of the equation (lambda-2)(x^2+x+1)^2-(lambda+2)(x^4+x^2+1) are real and equal for lambda=lambda_1,lambda_2 then lambda_1+lambda_2=0 (b) |lambda_1-lambda_2|=6 (c) lambda_1+lambda_2=32 (d) all of these