Home
Class 12
MATHS
Let f(x)=3x^(10)-7x^8+5x^6-21x^3+3x^2-7....

Let `f(x)=3x^(10)-7x^8+5x^6-21x^3+3x^2-7`. Then `lim_(hto0)(f(1-h)-f(1))/(h^3+3h)`

Promotional Banner

Similar Questions

Explore conceptually related problems

Let f(x)=3x^10-7x^8+5x^6-21x^3+3x^2-7 , then the value of lim_(h->0) (f(1-h)-f(1))/(h^3+3h)

Let f(x) = 3x^(10) - 7x^(8) + 5x^(6) - 21x^(3) + 3x^(2) - 7 . Then lim_(h rarr 0) (f(1-h)-f(1))/(h^(3) + 3h) equals :

Let f (x) =3x ^(10) -7x ^(8) +5x^(6) -21 x ^(3) +3x ^(2) -7 265 (lim _(htoo) (h ^(4) +3h^(2))/((f(1-h) -f (1))sin5h))=

Let f (x) =3x ^(10) -7x ^(8) +5x^(6) -21 x ^(3) +3x ^(2) -7 265 (lim _(htoo) (h ^(4) +3h^(2))/((f(1-h) -f (1))sin5h))=

f(x)=3x^(10)7x^(8)+5x^(6)-21x^(3)+3x^(2)7, then is the value of lim_(h rarr0)(f(1-h)-f(1))/(h^(3)+3h) is

Let f(x)=2x^(1//3)+3x^(1//2)+1. The value of lim_(hrarr0)(f(1+h)-f(1-h))/(h^(2)+2h) is equal to

Let f(x)=3x^(10)-7x+5x-21x^(3)+3x^(2)-7 , then the value of underset(h to 0)(Lt)(f(1-h)f(1))/(h^(3)+3h) is