Home
Class 10
MATHS
Property 7 (DIvision Algorithm) If a who...

Property 7 (DIvision Algorithm) If a whole number a is divided by a non-zero whole number b then there exists whole numbers q and r such that `a = bq + r` whole either .

A

`r = 0 or r < b`

B

`0 lt r lt b`

C

`0 ler lt b`

D

`0 lt r lt b`

Text Solution

Verified by Experts

The correct Answer is:
C

On dividing a by b, let q be the quotient and r be the remiander.
Then ,we have
a= bq +r where ` 0 le r lt b`
Promotional Banner

Topper's Solved these Questions

  • REAL NUMBERS

    RS AGGARWAL|Exercise Test Youself|20 Videos
  • REAL NUMBERS

    RS AGGARWAL|Exercise Exercise 1E|23 Videos
  • QUADRATIC EQUATIONS

    RS AGGARWAL|Exercise Test Yourself|55 Videos
  • SAMPLE PAPER I

    RS AGGARWAL|Exercise SECTION D|16 Videos

Similar Questions

Explore conceptually related problems

Does there exist a whole number a such that a-:a=a?

1 is the smallest whole number.

The smallest whole number is

Division of a whole number by _____ is not defined.

All integers are whole numbers.

What is the smallest whole number?

If a whole number is divided by another whole number, which is greater than the first one, the quotient is not equal to zero.

Dividing a decimal by a whole number

A whole number divided by another whole number greater than 1 never gives the quotient equal to the former.