Home
Class 10
MATHS
Solve for x and y : (1)/(2x) - ...

Solve for ` x and y` :
` (1)/(2x) - (1)/(y) = - 1, (1)/(x) + (1)/(2y)= 8 ( x ne 0 , y ne 0 )`

A

`(6,4)`

B

`(1/6 , 1/4)`

C

`(3,2)`

D

`(1/3 , 1/2)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equations \[ \frac{1}{2x} - \frac{1}{y} = -1 \] \[ \frac{1}{x} + \frac{1}{2y} = 8 \] we will use substitution to simplify the problem. Let's define: \[ u = \frac{1}{x} \quad \text{and} \quad v = \frac{1}{y} \] Now we can rewrite the equations in terms of \(u\) and \(v\): 1. From the first equation: \[ \frac{u}{2} - v = -1 \] Rearranging gives: \[ \frac{u}{2} = v - 1 \quad \Rightarrow \quad u = 2(v - 1) \quad \Rightarrow \quad u = 2v - 2 \quad \text{(Equation 1)} \] 2. From the second equation: \[ u + \frac{v}{2} = 8 \] Rearranging gives: \[ u = 8 - \frac{v}{2} \quad \text{(Equation 2)} \] Now we have two equations in terms of \(u\) and \(v\): - Equation 1: \(u = 2v - 2\) - Equation 2: \(u = 8 - \frac{v}{2}\) Next, we can set these two expressions for \(u\) equal to each other: \[ 2v - 2 = 8 - \frac{v}{2} \] To eliminate the fraction, multiply the entire equation by 2: \[ 4v - 4 = 16 - v \] Now, rearranging gives: \[ 4v + v = 16 + 4 \] \[ 5v = 20 \] \[ v = 4 \] Now that we have \(v\), we can substitute it back into Equation 1 to find \(u\): \[ u = 2(4) - 2 = 8 - 2 = 6 \] Now we have: \[ u = 6 \quad \text{and} \quad v = 4 \] Recalling our definitions of \(u\) and \(v\): \[ u = \frac{1}{x} \quad \Rightarrow \quad x = \frac{1}{u} = \frac{1}{6} \] \[ v = \frac{1}{y} \quad \Rightarrow \quad y = \frac{1}{v} = \frac{1}{4} \] Thus, the solution is: \[ x = \frac{1}{6}, \quad y = \frac{1}{4} \]

To solve the equations \[ \frac{1}{2x} - \frac{1}{y} = -1 \] \[ \frac{1}{x} + \frac{1}{2y} = 8 \] ...
Promotional Banner

Topper's Solved these Questions

  • LINEAR EQUATIONS IN TWO VARIABLES

    RS AGGARWAL|Exercise Exercise 3A|29 Videos
  • LINEAR EQUATIONS IN TWO VARIABLES

    RS AGGARWAL|Exercise Exercise 3B|50 Videos
  • HEIGHTS AND DISTANCES

    RS AGGARWAL|Exercise Multiple Choice Questions (Mcq)|25 Videos
  • MEAN,MEDAN,MODE OF GROUPED,DATA CUMULATIVE FREQUENCY GRAPH AND OGIVE

    RS AGGARWAL|Exercise Test Yourself|18 Videos

Similar Questions

Explore conceptually related problems

( 9)/(x) - ( 4)/( y) = 8 , ( 13)/(x) + ( 7)/(y) = 101 ( x ne 0, y ne 0 )

( 3 ) /(x) - (1 ) /( y) + 9 = 0 , (2)/(x) + ( 3)/( y) = 5 ( x ne 0 , y ne 0 )

( 1 ) /(x) + (1 ) /( y) = 7 , ( 2)/(x) + ( 3) /( y) = 17 (x ne 0, y ne 0 ) .

Solve for x and y : ( 3a)/(x) - ( 2b )/(y ) + 5 = 0, (a)/(x) + ( 3b)/( y) - 2 = 0 ( x ne 0 , y ne 0 )

Solve for x and y : (1)/( 7x ) + ( 1) /( 6y) = 3, (1)/( 2x) - (1)/( 3y ) = 5 (x ne 0, y ne 0)

Solve for x and y : (2)/(x) + (3)/(y ) = 13, (5)/(x) - ( 4)/( y) = - 2 ( x ne 0 and y ne 0 )

( 5)/(x)- ( 3) /( y ) = 1 , ( 3) /( 2 x ) + ( 2) /( 3y ) = 5 ( x ne 0 , y ne 0 )

Solve (2)/(x) + (3)/(y) = 13, (5)/(x) - ( 4)/(y) = - 2 , where x ne 0 and y ne 0 .

Solve for x and y : ( 2)/(sqrt x ) + (3)/(sqrty ) = 2, ( 4)/(sqrtx ) - ( 9)/(sqrty) = - 1 ( x ne 1, y ne 0 )

( 1 ) /( 2x ) + (1 ) /( 3y ) = 2, (1) /( 3x ) + (1) /( 2y ) = ( 13) /( 6) ( x ne 0 , y ne 0 )