Home
Class 10
MATHS
Solve for x and y : 6x + 3y ...

Solve for ` x and y ` :
` 6x + 3y = 7xy, 3x + 9y = 11 xy (x ne 0 , y ne 0 )`

A

`(2,2)`

B

`(3/2, 1)`

C

`(2,3)`

D

`(1, 3/2)`

Text Solution

Verified by Experts

The correct Answer is:
D

On dividing each of the given equations by xy, we get
` ( 6)/(y) + (3)/(x) = 7 " " ` … (i)
` (3)/( y ) + ( 9)/(x) = 11 " " `… (ii)
Putting ` (1)/(x) = u and (1)/(y) = v ` in (i) and (ii), we get
` 6v + 3u = 7 " " `... (iii)
` 3v + 9 u = 11 " "` ... (iv)
Multiplying (iii) by 3 and subtracting (iv) from the result, we get
` 18 v - 3 v = 21 - 11 `
`rArr 15 v = 10`
`rArr v = (10)/( 15) = (2)/(3)`
Putting ` v = (2)/(3)` in (iii), we get
` ( 6 xx (2)/(3)) + 3u = 7 rArr 4 + 3u = 7 rArr 3u = 3 rArr u = 1 `
Now, ` u = 1 rArr (1)/(x) = 1 rArr x = 1 `
And, ` v = (2)/(3) rArr (1)/(y) = (2)/(3) rArr 2 y = 3 rArr y = (3)/(2)`
Hence, ` x = 1 and y = (3)/(2)`.
Promotional Banner

Topper's Solved these Questions

  • LINEAR EQUATIONS IN TWO VARIABLES

    RS AGGARWAL|Exercise Exercise 3A|29 Videos
  • LINEAR EQUATIONS IN TWO VARIABLES

    RS AGGARWAL|Exercise Exercise 3B|50 Videos
  • HEIGHTS AND DISTANCES

    RS AGGARWAL|Exercise Multiple Choice Questions (Mcq)|25 Videos
  • MEAN,MEDAN,MODE OF GROUPED,DATA CUMULATIVE FREQUENCY GRAPH AND OGIVE

    RS AGGARWAL|Exercise Test Yourself|18 Videos

Similar Questions

Explore conceptually related problems

x + y = 5 xy , 3x + 2y = 13 xy ( x ne 0, y ne 0 )

4 x + 6y = 3 xy , 8x + 9 y = 5xy ( x ne 0 , y ne 0 )

Solve 6x + 3y = 7xy and 3x + 9y = 11xy.

Solve for x and y : (xy )/(x + y ) = ( 6)/(5), (xy)/( y - x) = 6 (x ne 0, y ne 0 and x ne y ) .

If 4x - 3y = 7xy and 3x + 2y = 18xy , then (x,y) =

Solve for x and y: 2x + 3y + 1 = 0, 3x + 2y - 11 = 0

Solve for x and y : (2)/(x) + (3)/(y ) = 13, (5)/(x) - ( 4)/( y) = - 2 ( x ne 0 and y ne 0 )

x + ( 6) /( y ) = 6, 3x - ( 8)/( y) = 5 ( y ne 0 )

Solve for x and y : (1)/( 7x ) + ( 1) /( 6y) = 3, (1)/( 2x) - (1)/( 3y ) = 5 (x ne 0, y ne 0)

( 1 ) /(x) + (1 ) /( y) = 7 , ( 2)/(x) + ( 3) /( y) = 17 (x ne 0, y ne 0 ) .