Home
Class 10
MATHS
Solve for x and y : ( 2)/(sqrt x ...

Solve for x and y :
` ( 2)/(sqrt x ) + (3)/(sqrty ) = 2, ( 4)/(sqrtx ) - ( 9)/(sqrty) = - 1 ( x ne 1, y ne 0 )`

Text Solution

Verified by Experts

Putting ` (1)/(sqrtx ) = u and (1)/(sqrty) = v `, the given equations become
` 2u + 3v = 2 " "`… (i)
` 4u - 9v = - 1 " " ` … (ii) Multiplying (i) by 3 and adding the result with (ii), we get
` 6u + 4u = 6- 1 `
` rArr 10 u = 5`
` rArr u = (5)/(10) rArr u = (1)/(2)`
Putting `u = (1)/(2)` in (i), we get
` ( 2 xx (1)/(2)) + 3v = 2 `
` rArr 1 + 3v = 2 rArr 3 v = 1 rArr v = (1)/(3)`
Now, `u = (1)/(2) rArr (1)/(sqrtx) = (1)/(2) rArr sqrtx = 2 rArr = 2 rArr x = 4`.
And, `v = (1)/(3) rArr (1)/( sqrty ) = (1)/(3) rArr sqrty = 3 rArr y = 9`
Hence, ` x = 4 and x = 9`.
Promotional Banner

Topper's Solved these Questions

  • LINEAR EQUATIONS IN TWO VARIABLES

    RS AGGARWAL|Exercise Exercise 3A|29 Videos
  • LINEAR EQUATIONS IN TWO VARIABLES

    RS AGGARWAL|Exercise Exercise 3B|50 Videos
  • HEIGHTS AND DISTANCES

    RS AGGARWAL|Exercise Multiple Choice Questions (Mcq)|25 Videos
  • MEAN,MEDAN,MODE OF GROUPED,DATA CUMULATIVE FREQUENCY GRAPH AND OGIVE

    RS AGGARWAL|Exercise Test Yourself|18 Videos

Similar Questions

Explore conceptually related problems

Solve: (2)/(sqrt(x))-(3)/(sqrt(y))=2 and (4)/(sqrt(x))-(9)/(sqrt(y))=-1

Solve for x and y : 2/sqrt(x) + 3/sqrt(y) = 2 4/sqrt(x) + 9/sqrt(y) = -1

(4)/(sqrtx) + (7)/(sqrtx) = sqrtx, y^(2)-((11)^(5/2))/(sqrty) = 0

( 5)/(x)- ( 3) /( y ) = 1 , ( 3) /( 2 x ) + ( 2) /( 3y ) = 5 ( x ne 0 , y ne 0 )

( 1 ) /( 2x ) + (1 ) /( 3y ) = 2, (1) /( 3x ) + (1) /( 2y ) = ( 13) /( 6) ( x ne 0 , y ne 0 )

( 9)/(x) - ( 4)/( y) = 8 , ( 13)/(x) + ( 7)/(y) = 101 ( x ne 0, y ne 0 )

Solve for x and y : (2)/(x) + (3)/(y ) = 13, (5)/(x) - ( 4)/( y) = - 2 ( x ne 0 and y ne 0 )

( 1 ) /(x) + (1 ) /( y) = 7 , ( 2)/(x) + ( 3) /( y) = 17 (x ne 0, y ne 0 ) .

Solve (2)/(x) + (3)/(y) = 13, (5)/(x) - ( 4)/(y) = - 2 , where x ne 0 and y ne 0 .

( 3 ) /(x) - (1 ) /( y) + 9 = 0 , (2)/(x) + ( 3)/( y) = 5 ( x ne 0 , y ne 0 )