Home
Class 10
MATHS
( 5)/(x)- ( 3) /( y ) = 1, ( 3) /(...

` ( 5)/(x)- ( 3) /( y ) = 1`,
` ( 3) /( 2 x ) + ( 2) /( 3y ) = 5 ( x ne 0 , y ne 0 )`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given system of equations: 1. \( \frac{5}{x} - \frac{3}{y} = 1 \) (Equation 1) 2. \( \frac{3}{2x} + \frac{2}{3y} = 5 \) (Equation 2) We will use substitution to simplify the equations. Let's define: - \( u = \frac{1}{x} \) - \( v = \frac{1}{y} \) Now, we can rewrite the equations in terms of \( u \) and \( v \): 1. From Equation 1: \[ 5u - 3v = 1 \quad \text{(Equation 3)} \] 2. From Equation 2: \[ \frac{3}{2}u + \frac{2}{3}v = 5 \] To eliminate the fractions, we can multiply through by 6 (the least common multiple of the denominators 2 and 3): \[ 6 \left(\frac{3}{2}u\right) + 6 \left(\frac{2}{3}v\right) = 6 \cdot 5 \] This simplifies to: \[ 9u + 4v = 30 \quad \text{(Equation 4)} \] Now we have a new system of equations: - Equation 3: \( 5u - 3v = 1 \) - Equation 4: \( 9u + 4v = 30 \) Next, we will solve this system using the elimination method. **Step 1: Eliminate \( v \)** Multiply Equation 3 by 4: \[ 4(5u - 3v) = 4 \cdot 1 \] This gives: \[ 20u - 12v = 4 \quad \text{(Equation 5)} \] Multiply Equation 4 by 3: \[ 3(9u + 4v) = 3 \cdot 30 \] This gives: \[ 27u + 12v = 90 \quad \text{(Equation 6)} \] **Step 2: Add Equations 5 and 6** Now, we add Equation 5 and Equation 6: \[ (20u - 12v) + (27u + 12v) = 4 + 90 \] The \( -12v \) and \( +12v \) cancel out: \[ 47u = 94 \] **Step 3: Solve for \( u \)** Now, divide both sides by 47: \[ u = \frac{94}{47} = 2 \] **Step 4: Substitute \( u \) back to find \( v \)** Substituting \( u = 2 \) back into Equation 3: \[ 5(2) - 3v = 1 \] This simplifies to: \[ 10 - 3v = 1 \] Rearranging gives: \[ -3v = 1 - 10 \] \[ -3v = -9 \] Dividing by -3: \[ v = 3 \] **Step 5: Find \( x \) and \( y \)** Recall that: - \( u = \frac{1}{x} \) implies \( x = \frac{1}{u} = \frac{1}{2} \) - \( v = \frac{1}{y} \) implies \( y = \frac{1}{v} = \frac{1}{3} \) **Final Answer:** \[ x = \frac{1}{2}, \quad y = \frac{1}{3} \] ---

To solve the given system of equations: 1. \( \frac{5}{x} - \frac{3}{y} = 1 \) (Equation 1) 2. \( \frac{3}{2x} + \frac{2}{3y} = 5 \) (Equation 2) We will use substitution to simplify the equations. Let's define: - \( u = \frac{1}{x} \) ...
Promotional Banner

Topper's Solved these Questions

  • LINEAR EQUATIONS IN TWO VARIABLES

    RS AGGARWAL|Exercise Exercise 3C|13 Videos
  • LINEAR EQUATIONS IN TWO VARIABLES

    RS AGGARWAL|Exercise Exercise 3D|31 Videos
  • LINEAR EQUATIONS IN TWO VARIABLES

    RS AGGARWAL|Exercise Exercise 3A|29 Videos
  • HEIGHTS AND DISTANCES

    RS AGGARWAL|Exercise Multiple Choice Questions (Mcq)|25 Videos
  • MEAN,MEDAN,MODE OF GROUPED,DATA CUMULATIVE FREQUENCY GRAPH AND OGIVE

    RS AGGARWAL|Exercise Test Yourself|18 Videos

Similar Questions

Explore conceptually related problems

( 1 ) /( 2x ) + (1 ) /( 3y ) = 2, (1) /( 3x ) + (1) /( 2y ) = ( 13) /( 6) ( x ne 0 , y ne 0 )

x + ( 6) /( y ) = 6, 3x - ( 8)/( y) = 5 ( y ne 0 )

4 x + 6y = 3 xy , 8x + 9 y = 5xy ( x ne 0 , y ne 0 )

( 3 ) /(x) - (1 ) /( y) + 9 = 0 , (2)/(x) + ( 3)/( y) = 5 ( x ne 0 , y ne 0 )

x + y = 5 xy , 3x + 2y = 13 xy ( x ne 0, y ne 0 )

Solve for x and y : (1)/( 7x ) + ( 1) /( 6y) = 3, (1)/( 2x) - (1)/( 3y ) = 5 (x ne 0, y ne 0)

( 1 ) /(x) + (1 ) /( y) = 7 , ( 2)/(x) + ( 3) /( y) = 17 (x ne 0, y ne 0 ) .

Solve for x and y : ( 3a)/(x) - ( 2b )/(y ) + 5 = 0, (a)/(x) + ( 3b)/( y) - 2 = 0 ( x ne 0 , y ne 0 )

Solve for x and y : (2)/(x) + (3)/(y ) = 13, (5)/(x) - ( 4)/( y) = - 2 ( x ne 0 and y ne 0 )

Solve for x and y : ( 2)/(sqrt x ) + (3)/(sqrty ) = 2, ( 4)/(sqrtx ) - ( 9)/(sqrty) = - 1 ( x ne 1, y ne 0 )

RS AGGARWAL-LINEAR EQUATIONS IN TWO VARIABLES -Exercise 3B
  1. ( 3 ) /(x) - (1 ) /( y) + 9 = 0 , (2)/(x) + ( 3)/( y) = 5 ( ...

    Text Solution

    |

  2. ( 9)/(x) - ( 4)/( y) = 8, ( 13)/(x) + ( 7)/(y) = 101 ( x ne 0...

    Text Solution

    |

  3. ( 5)/(x)- ( 3) /( y ) = 1, ( 3) /( 2 x ) + ( 2) /( 3y ) = 5...

    Text Solution

    |

  4. ( 1 ) /( 2x ) + (1 ) /( 3y ) = 2, (1) /( 3x ) + (1) /( 2y...

    Text Solution

    |

  5. 4 x + 6y = 3 xy , 8x + 9 y = 5xy ( x ne 0 , y ne 0 )

    Text Solution

    |

  6. x + y = 5 xy , 3x + 2y = 13 xy ( x ne 0, y ne 0 )

    Text Solution

    |

  7. Solve the following system of equations: 5/(x+y)-2/(x-y)=-1,\ \ \ \...

    Text Solution

    |

  8. Solve : (3)/(x + y ) + ( 2)/(x - y ) = 2 and (9)/(x + y ) - ...

    Text Solution

    |

  9. ( 5 ) /( x+ 1 ) - (2)/(y - 1 ) = (1)/(2), (10)/(x + 1) + ( 2...

    Text Solution

    |

  10. (44)/(x+y)+(30)/(x-y)=10 (55)/(x+y)+(40)/(x-y)=13

    Text Solution

    |

  11. ( 10 )/( x+ y) + (2 ) /(x - y ) = 4, ( 15)/( x + y ) - ...

    Text Solution

    |

  12. Solve For x and y : 71 x + 37 y = 253 , 37 x + 71 y = 28...

    Text Solution

    |

  13. {:(217x + 131y = 913),(131x + 217y = 827):}

    Text Solution

    |

  14. Solve the given pair of equations: 23 x - 29 y = 98 , 29 x ...

    Text Solution

    |

  15. ( 2 x + 5y )/( xy ) = 6, (4 x - 5 y)/( xy ) = - 3

    Text Solution

    |

  16. 1/(3x+y)+1/(3x-y)=3/4, 1/(2(3x+y))-1/(2(3x-y))=-1/8

    Text Solution

    |

  17. {:((1)/(2(x + 2y)) + (5)/(3(3x - 2y))=(-3)/(2)),((5)/(4(x + 2y)) - (3)...

    Text Solution

    |

  18. Solve the following system of equations: 2/(3x+2y)+3/(3x-2y)=(17)/5...

    Text Solution

    |

  19. Solve for x and y : 6x + 3y = 7xy, 3x + 9y = 11 xy (x n...

    Text Solution

    |

  20. x+y=a+b , a x-b y=a^2-b^2

    Text Solution

    |