Home
Class 10
MATHS
( 1 ) /( 2x ) + (1 ) /( 3y ) = 2, ...

` ( 1 ) /( 2x ) + (1 ) /( 3y ) = 2, `
` (1) /( 3x ) + (1) /( 2y ) = ( 13) /( 6) ( x ne 0 , y ne 0 )`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the system of equations given by: 1. \( \frac{1}{2x} + \frac{1}{3y} = 2 \) 2. \( \frac{1}{3x} + \frac{1}{2y} = \frac{13}{6} \) we will follow these steps: ### Step 1: Substitute Variables Let \( u = \frac{1}{x} \) and \( v = \frac{1}{y} \). Then we can rewrite the equations in terms of \( u \) and \( v \). ### Step 2: Rewrite the Equations Substituting \( u \) and \( v \) into the equations, we get: 1. \( \frac{u}{2} + \frac{v}{3} = 2 \) 2. \( \frac{u}{3} + \frac{v}{2} = \frac{13}{6} \) ### Step 3: Clear the Fractions To eliminate the fractions, we will multiply each equation by the least common multiple (LCM) of the denominators. For the first equation, the LCM of 2 and 3 is 6: \[ 6 \left( \frac{u}{2} + \frac{v}{3} \right) = 6 \cdot 2 \] This simplifies to: \[ 3u + 2v = 12 \quad \text{(Equation 3)} \] For the second equation, the LCM of 3 and 2 is also 6: \[ 6 \left( \frac{u}{3} + \frac{v}{2} \right) = 6 \cdot \frac{13}{6} \] This simplifies to: \[ 2u + 3v = 13 \quad \text{(Equation 4)} \] ### Step 4: Solve the System of Equations Now we have a system of linear equations: 1. \( 3u + 2v = 12 \) (Equation 3) 2. \( 2u + 3v = 13 \) (Equation 4) We can solve these equations simultaneously. ### Step 5: Multiply and Add/Subtract Equations To eliminate \( v \), we can multiply Equation 3 by 3 and Equation 4 by 2: \[ 9u + 6v = 36 \quad \text{(Equation 5)} \] \[ 4u + 6v = 26 \quad \text{(Equation 6)} \] Now, subtract Equation 6 from Equation 5: \[ (9u + 6v) - (4u + 6v) = 36 - 26 \] This simplifies to: \[ 5u = 10 \implies u = 2 \] ### Step 6: Substitute Back to Find \( v \) Now substitute \( u = 2 \) back into Equation 3: \[ 3(2) + 2v = 12 \] This simplifies to: \[ 6 + 2v = 12 \implies 2v = 6 \implies v = 3 \] ### Step 7: Find \( x \) and \( y \) Recall that: \[ u = \frac{1}{x} \implies x = \frac{1}{u} = \frac{1}{2} \] \[ v = \frac{1}{y} \implies y = \frac{1}{v} = \frac{1}{3} \] ### Final Solution Thus, the solutions are: \[ x = \frac{1}{2}, \quad y = \frac{1}{3} \]

To solve the system of equations given by: 1. \( \frac{1}{2x} + \frac{1}{3y} = 2 \) 2. \( \frac{1}{3x} + \frac{1}{2y} = \frac{13}{6} \) we will follow these steps: ### Step 1: Substitute Variables ...
Promotional Banner

Topper's Solved these Questions

  • LINEAR EQUATIONS IN TWO VARIABLES

    RS AGGARWAL|Exercise Exercise 3C|13 Videos
  • LINEAR EQUATIONS IN TWO VARIABLES

    RS AGGARWAL|Exercise Exercise 3D|31 Videos
  • LINEAR EQUATIONS IN TWO VARIABLES

    RS AGGARWAL|Exercise Exercise 3A|29 Videos
  • HEIGHTS AND DISTANCES

    RS AGGARWAL|Exercise Multiple Choice Questions (Mcq)|25 Videos
  • MEAN,MEDAN,MODE OF GROUPED,DATA CUMULATIVE FREQUENCY GRAPH AND OGIVE

    RS AGGARWAL|Exercise Test Yourself|18 Videos

Similar Questions

Explore conceptually related problems

( 3 ) /(x) - (1 ) /( y) + 9 = 0 , (2)/(x) + ( 3)/( y) = 5 ( x ne 0 , y ne 0 )

( 1 ) /(x) + (1 ) /( y) = 7 , ( 2)/(x) + ( 3) /( y) = 17 (x ne 0, y ne 0 ) .

( 5)/(x)- ( 3) /( y ) = 1 , ( 3) /( 2 x ) + ( 2) /( 3y ) = 5 ( x ne 0 , y ne 0 )

x + y = 5 xy , 3x + 2y = 13 xy ( x ne 0, y ne 0 )

( 5 ) /( x+ 1 ) - (2)/(y - 1 ) = (1)/(2) , (10)/(x + 1) + ( 2 ) /( y - 1) = ( 5)/(2), x ne - 1 and y ne 1

( 9)/(x) - ( 4)/( y) = 8 , ( 13)/(x) + ( 7)/(y) = 101 ( x ne 0, y ne 0 )

4 x + 6y = 3 xy , 8x + 9 y = 5xy ( x ne 0 , y ne 0 )

Solve for x and y : (1)/( 7x ) + ( 1) /( 6y) = 3, (1)/( 2x) - (1)/( 3y ) = 5 (x ne 0, y ne 0)

( 5)/(x) + 6y = 13, (3)/(x) + 4y = 7 ( x ne 0 )

Solve for x and y : (1)/(2x) - (1)/(y) = - 1, (1)/(x) + (1)/(2y)= 8 ( x ne 0 , y ne 0 )

RS AGGARWAL-LINEAR EQUATIONS IN TWO VARIABLES -Exercise 3B
  1. ( 9)/(x) - ( 4)/( y) = 8, ( 13)/(x) + ( 7)/(y) = 101 ( x ne 0...

    Text Solution

    |

  2. ( 5)/(x)- ( 3) /( y ) = 1, ( 3) /( 2 x ) + ( 2) /( 3y ) = 5...

    Text Solution

    |

  3. ( 1 ) /( 2x ) + (1 ) /( 3y ) = 2, (1) /( 3x ) + (1) /( 2y...

    Text Solution

    |

  4. 4 x + 6y = 3 xy , 8x + 9 y = 5xy ( x ne 0 , y ne 0 )

    Text Solution

    |

  5. x + y = 5 xy , 3x + 2y = 13 xy ( x ne 0, y ne 0 )

    Text Solution

    |

  6. Solve the following system of equations: 5/(x+y)-2/(x-y)=-1,\ \ \ \...

    Text Solution

    |

  7. Solve : (3)/(x + y ) + ( 2)/(x - y ) = 2 and (9)/(x + y ) - ...

    Text Solution

    |

  8. ( 5 ) /( x+ 1 ) - (2)/(y - 1 ) = (1)/(2), (10)/(x + 1) + ( 2...

    Text Solution

    |

  9. (44)/(x+y)+(30)/(x-y)=10 (55)/(x+y)+(40)/(x-y)=13

    Text Solution

    |

  10. ( 10 )/( x+ y) + (2 ) /(x - y ) = 4, ( 15)/( x + y ) - ...

    Text Solution

    |

  11. Solve For x and y : 71 x + 37 y = 253 , 37 x + 71 y = 28...

    Text Solution

    |

  12. {:(217x + 131y = 913),(131x + 217y = 827):}

    Text Solution

    |

  13. Solve the given pair of equations: 23 x - 29 y = 98 , 29 x ...

    Text Solution

    |

  14. ( 2 x + 5y )/( xy ) = 6, (4 x - 5 y)/( xy ) = - 3

    Text Solution

    |

  15. 1/(3x+y)+1/(3x-y)=3/4, 1/(2(3x+y))-1/(2(3x-y))=-1/8

    Text Solution

    |

  16. {:((1)/(2(x + 2y)) + (5)/(3(3x - 2y))=(-3)/(2)),((5)/(4(x + 2y)) - (3)...

    Text Solution

    |

  17. Solve the following system of equations: 2/(3x+2y)+3/(3x-2y)=(17)/5...

    Text Solution

    |

  18. Solve for x and y : 6x + 3y = 7xy, 3x + 9y = 11 xy (x n...

    Text Solution

    |

  19. x+y=a+b , a x-b y=a^2-b^2

    Text Solution

    |

  20. Solve: x/a+y/b=2,\ \ \ \ a x-b y=a^2-b^2

    Text Solution

    |