Home
Class 10
MATHS
( 5 ) /( x+ 1 ) - (2)/(y - 1 ) = (1)/...

` ( 5 ) /( x+ 1 ) - (2)/(y - 1 ) = (1)/(2)`,
` (10)/(x + 1) + ( 2 ) /( y - 1) = ( 5)/(2), x ne - 1 and y ne 1 `

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given system of equations: 1. **Equation 1**: \(\frac{5}{x+1} - \frac{2}{y-1} = \frac{1}{2}\) 2. **Equation 2**: \(\frac{10}{x+1} + \frac{2}{y-1} = \frac{5}{2}\) We will use substitution to simplify the equations. ### Step 1: Substitute Variables Let: - \( u = \frac{5}{x+1} \) - \( v = \frac{2}{y-1} \) Now, we can rewrite the equations as: - **Equation 1**: \( u - v = \frac{1}{2} \) (1) - **Equation 2**: \( 2u + v = \frac{5}{2} \) (2) ### Step 2: Solve for \( u \) and \( v \) Now, we will solve these two equations simultaneously. From Equation (1): \[ v = u - \frac{1}{2} \] Substituting \( v \) in Equation (2): \[ 2u + (u - \frac{1}{2}) = \frac{5}{2} \] Combine like terms: \[ 3u - \frac{1}{2} = \frac{5}{2} \] ### Step 3: Isolate \( u \) Add \(\frac{1}{2}\) to both sides: \[ 3u = \frac{5}{2} + \frac{1}{2} \] \[ 3u = \frac{6}{2} \] \[ 3u = 3 \] Now divide by 3: \[ u = 1 \] ### Step 4: Find \( v \) Substituting \( u = 1 \) back into Equation (1): \[ 1 - v = \frac{1}{2} \] \[ v = 1 - \frac{1}{2} \] \[ v = \frac{1}{2} \] ### Step 5: Substitute Back to Find \( x \) and \( y \) Now we have: - \( u = 1 \) implies \( \frac{5}{x+1} = 1 \) - \( v = \frac{1}{2} \) implies \( \frac{2}{y-1} = \frac{1}{2} \) From \( \frac{5}{x+1} = 1 \): \[ 5 = x + 1 \] \[ x = 5 - 1 \] \[ x = 4 \] From \( \frac{2}{y-1} = \frac{1}{2} \): Cross-multiply: \[ 2 = \frac{1}{2}(y - 1) \] Multiply both sides by 2: \[ 4 = y - 1 \] \[ y = 4 + 1 \] \[ y = 5 \] ### Final Solution Thus, the solution to the system of equations is: \[ (x, y) = (4, 5) \]

To solve the given system of equations: 1. **Equation 1**: \(\frac{5}{x+1} - \frac{2}{y-1} = \frac{1}{2}\) 2. **Equation 2**: \(\frac{10}{x+1} + \frac{2}{y-1} = \frac{5}{2}\) We will use substitution to simplify the equations. ### Step 1: Substitute Variables ...
Promotional Banner

Topper's Solved these Questions

  • LINEAR EQUATIONS IN TWO VARIABLES

    RS AGGARWAL|Exercise Exercise 3C|13 Videos
  • LINEAR EQUATIONS IN TWO VARIABLES

    RS AGGARWAL|Exercise Exercise 3D|31 Videos
  • LINEAR EQUATIONS IN TWO VARIABLES

    RS AGGARWAL|Exercise Exercise 3A|29 Videos
  • HEIGHTS AND DISTANCES

    RS AGGARWAL|Exercise Multiple Choice Questions (Mcq)|25 Videos
  • MEAN,MEDAN,MODE OF GROUPED,DATA CUMULATIVE FREQUENCY GRAPH AND OGIVE

    RS AGGARWAL|Exercise Test Yourself|18 Videos

Similar Questions

Explore conceptually related problems

( 1 ) /( 2x ) + (1 ) /( 3y ) = 2, (1) /( 3x ) + (1) /( 2y ) = ( 13) /( 6) ( x ne 0 , y ne 0 )

{:((5)/(x - 1) + (1)/(y - 2) = 2),((6)/(x - 1) - (3)/(y - 2) = 1):}

( 5)/((x + y)) - ( 2 )/(( x - y )) + 1 = 0 , ( 15)/((x + y ) + ( 7) /(( x - y )) - 10 = 0 ( x ne y , x ne - y )

( 1 ) /(x) + (1 ) /( y) = 7 , ( 2)/(x) + ( 3) /( y) = 17 (x ne 0, y ne 0 ) .

( 5)/(x)- ( 3) /( y ) = 1 , ( 3) /( 2 x ) + ( 2) /( 3y ) = 5 ( x ne 0 , y ne 0 )

( 3 ) /(x) - (1 ) /( y) + 9 = 0 , (2)/(x) + ( 3)/( y) = 5 ( x ne 0 , y ne 0 )

(5) / (x-1) + (1) / (y-2) = 2 (6) / (x-1) - (3) / (y-2) = 1

Solve for x and y : (1)/(2x) - (1)/(y) = - 1, (1)/(x) + (1)/(2y)= 8 ( x ne 0 , y ne 0 )

If (2x + y + 2)/(5) = ( 3x - y + 1)/( 3 ) = ( 2 x + 2y + 1 )/(6) then

Solve for x and y : (1)/( 7x ) + ( 1) /( 6y) = 3, (1)/( 2x) - (1)/( 3y ) = 5 (x ne 0, y ne 0)