Home
Class 10
MATHS
( 10 )/( x+ y) + (2 ) /(x - y ) = 4...

` ( 10 )/( x+ y) + (2 ) /(x - y ) = 4`,
` ( 15)/( x + y ) - (9) /( x - y) = - 2 `.

A

` x = ( 21)/(8), y = (9)/(8)`

B

` x = ( 21)/(4), y = (9)/(8)`

C

` x = ( 21)/(8), y = -(9)/(8)`

D

` x = ( 21)/(8), y = (9)/(4)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given system of equations: 1. **Equations**: \[ \frac{10}{x+y} + \frac{2}{x-y} = 4 \quad \text{(1)} \] \[ \frac{15}{x+y} - \frac{9}{x-y} = -2 \quad \text{(2)} \] 2. **Substitution**: Let: \[ a = \frac{1}{x+y} \quad \text{and} \quad b = \frac{1}{x-y} \] Then, we can rewrite the equations as: \[ 10a + 2b = 4 \quad \text{(3)} \] \[ 15a - 9b = -2 \quad \text{(4)} \] 3. **Multiply to Eliminate \(b\)**: To eliminate \(b\), we can multiply equation (3) by 9 and equation (4) by 2: \[ 90a + 18b = 36 \quad \text{(5)} \] \[ 30a - 18b = -4 \quad \text{(6)} \] 4. **Add Equations (5) and (6)**: Adding equations (5) and (6): \[ 90a + 18b + 30a - 18b = 36 - 4 \] This simplifies to: \[ 120a = 32 \] 5. **Solve for \(a\)**: Dividing both sides by 120: \[ a = \frac{32}{120} = \frac{4}{15} \] 6. **Substitute \(a\) back into Equation (3)**: Substitute \(a\) into equation (3): \[ 10\left(\frac{4}{15}\right) + 2b = 4 \] This simplifies to: \[ \frac{40}{15} + 2b = 4 \] \[ 2b = 4 - \frac{40}{15} \] Converting 4 to a fraction with a denominator of 15: \[ 2b = \frac{60}{15} - \frac{40}{15} = \frac{20}{15} \] Thus: \[ b = \frac{10}{15} = \frac{2}{3} \] 7. **Find \(x+y\) and \(x-y\)**: From our substitutions: \[ \frac{1}{x+y} = a = \frac{4}{15} \implies x+y = \frac{15}{4} \] \[ \frac{1}{x-y} = b = \frac{2}{3} \implies x-y = \frac{3}{2} \] 8. **Set Up the System of Equations**: Now we have: \[ x+y = \frac{15}{4} \quad \text{(7)} \] \[ x-y = \frac{3}{2} \quad \text{(8)} \] 9. **Add Equations (7) and (8)**: Adding equations (7) and (8): \[ (x+y) + (x-y) = \frac{15}{4} + \frac{3}{2} \] Converting \(\frac{3}{2}\) to a fraction with a denominator of 4: \[ \frac{3}{2} = \frac{6}{4} \] Thus: \[ 2x = \frac{15}{4} + \frac{6}{4} = \frac{21}{4} \] Therefore: \[ x = \frac{21}{8} \] 10. **Substitute \(x\) back to find \(y\)**: Substitute \(x\) into equation (7): \[ \frac{21}{8} + y = \frac{15}{4} \] Converting \(\frac{15}{4}\) to a fraction with a denominator of 8: \[ \frac{15}{4} = \frac{30}{8} \] Thus: \[ y = \frac{30}{8} - \frac{21}{8} = \frac{9}{8} \] 11. **Final Values**: Therefore, the solution is: \[ x = \frac{21}{8}, \quad y = \frac{9}{8} \]
Promotional Banner

Topper's Solved these Questions

  • LINEAR EQUATIONS IN TWO VARIABLES

    RS AGGARWAL|Exercise Exercise 3C|13 Videos
  • LINEAR EQUATIONS IN TWO VARIABLES

    RS AGGARWAL|Exercise Exercise 3D|31 Videos
  • LINEAR EQUATIONS IN TWO VARIABLES

    RS AGGARWAL|Exercise Exercise 3A|29 Videos
  • HEIGHTS AND DISTANCES

    RS AGGARWAL|Exercise Multiple Choice Questions (Mcq)|25 Videos
  • MEAN,MEDAN,MODE OF GROUPED,DATA CUMULATIVE FREQUENCY GRAPH AND OGIVE

    RS AGGARWAL|Exercise Test Yourself|18 Videos

Similar Questions

Explore conceptually related problems

( 5)/((x + y)) - ( 2 )/(( x - y )) + 1 = 0 , ( 15)/((x + y ) + ( 7) /(( x - y )) - 10 = 0 ( x ne y , x ne - y )

Solve : (3)/(x + y ) + ( 2)/(x - y ) = 2 and (9)/(x + y ) - ( 4)/(x - y) = 1 .

{:((10)/(x + y) - (4)/(x - y)= -2),((15)/(x + y) + (7)/(x - y) = 10):}

1 + 5x + 3y = 9 2x 3y = 12 X = (x, y) - 4

3x + 4y = 10, 2x-2y = 2

Find each of the following products: (i) (x - 4)(x - 4) (ii) (2x - 3y)(2x - 3y) (iii) ((3)/(4) x - (5)/(6) y) ((3)/(4)x - (5)/(6) y) (iv) (x - (3)/(x)) (x - (3)/(x)) (v) ((1)/(3) x^(2) - 9) ((1)/(3) x^(2) - 9) (vi) ((1)/(2) y^(2) - (1)/(3) y) ((1)/(2) y^(2) - (1)/(3) y)

The equation of the circle passing through (1/2, -1) and having pair of straight lines x^2 - y^2 + 3x + y + 2 = 0 as its two diameters is : (A) 4x^2 + 4y^2 + 12x - 4y - 15 = 0 (B) 4x^2 + 4y^2 + 15x + 4y - 12 = 0 (C) 4x^2 + 4y^2 - 4x + 8y + 5 = 0 (D) none of these

Solve the following system of equations: (10)/(x+y)+(2)/(x-y)=4,quad (15)/(x+y)-(9)/(x-y)=-2