Home
Class 10
MATHS
(bx ) /(a) + ( ay ) /( b) = a ^(2) + b ...

` (bx ) /(a) + ( ay ) /( b) = a ^(2) + b ^(2)`,
` x + y = 2ab `

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given equations: 1. **Given Equations:** \[ \frac{bx}{a} + \frac{ay}{b} = a^2 + b^2 \quad \text{(Equation 1)} \] \[ x + y = 2ab \quad \text{(Equation 2)} \] 2. **Clear the fractions in Equation 1:** Multiply both sides of Equation 1 by \(ab\) to eliminate the denominators: \[ b^2x + a^2y = a^2b + ab^2 \] This simplifies to: \[ b^2x + a^2y = a^3 + b^3 \quad \text{(Equation 3)} \] 3. **Rearranging Equation 2:** From Equation 2, we can express \(y\) in terms of \(x\): \[ y = 2ab - x \quad \text{(Equation 4)} \] 4. **Substituting Equation 4 into Equation 3:** Substitute \(y\) from Equation 4 into Equation 3: \[ b^2x + a^2(2ab - x) = a^3 + b^3 \] Expanding this gives: \[ b^2x + 2a^2b - a^2x = a^3 + b^3 \] Combine like terms: \[ (b^2 - a^2)x + 2a^2b = a^3 + b^3 \] 5. **Solving for \(x\):** Rearranging gives: \[ (b^2 - a^2)x = a^3 + b^3 - 2a^2b \] Therefore: \[ x = \frac{a^3 + b^3 - 2a^2b}{b^2 - a^2} \] 6. **Finding \(y\):** Substitute \(x\) back into Equation 4 to find \(y\): \[ y = 2ab - \frac{a^3 + b^3 - 2a^2b}{b^2 - a^2} \] 7. **Final Values:** After simplifying, we find: \[ x = ab \quad \text{and} \quad y = ab \] ### Final Answers: \[ x = ab, \quad y = ab \]

To solve the given equations: 1. **Given Equations:** \[ \frac{bx}{a} + \frac{ay}{b} = a^2 + b^2 \quad \text{(Equation 1)} \] \[ x + y = 2ab \quad \text{(Equation 2)} ...
Promotional Banner

Topper's Solved these Questions

  • LINEAR EQUATIONS IN TWO VARIABLES

    RS AGGARWAL|Exercise Exercise 3C|13 Videos
  • LINEAR EQUATIONS IN TWO VARIABLES

    RS AGGARWAL|Exercise Exercise 3D|31 Videos
  • LINEAR EQUATIONS IN TWO VARIABLES

    RS AGGARWAL|Exercise Exercise 3A|29 Videos
  • HEIGHTS AND DISTANCES

    RS AGGARWAL|Exercise Multiple Choice Questions (Mcq)|25 Videos
  • MEAN,MEDAN,MODE OF GROUPED,DATA CUMULATIVE FREQUENCY GRAPH AND OGIVE

    RS AGGARWAL|Exercise Test Yourself|18 Videos

Similar Questions

Explore conceptually related problems

Solve the following system of linear equations. : ( a - b) x + (a + b ) y = a ^(2) - 2ab - b ^(2) , (a + b ) (x + y ) = a ^(2) + b ^(2) .

(bx)/(a)-(ay)/(b)+a+b=0 and bx-ay+2ab

If the lines (a-b-c) x + 2ay + 2a = 0 , 2bx + ( b- c - a) y + 2b = 0 and (2c+1) x + 2cy + c - a - b = 0 are concurrent , then the prove that either a+b+ c = 0 or (a+b+c)^(2) + 2a = 0

Solve for 'x' and 'y': (a -b) x + (a + b) y =a^2 - b^2 - 2ab (a + b) (x + y) = a ^2+ b^2

(ax+by)^(2)+(bx-ay)^(2)

(ax+by)^(2)-(ay+bx)^(2)