Home
Class 11
MATHS
If (n+1)! =90 xx(n-1)!, find n....

If `(n+1)! =90 xx(n-1)!, ` find `n`.

A

`n=11`

B

`n=8`

C

`n=10`

D

`n=9`

Text Solution

Verified by Experts

The correct Answer is:
D

We have `(n+1)! =90 xx(n-1)! `
`rArr (n+1)xxnxx(n-1)! =90xx(n-1)! `
`rArr (n+1)n=90 `
` rArr (n+1)n=10xx9 `
[ writing 90 as product of two consecutive integers]
` rArr n=9. `
Hence, `n=9. `
Promotional Banner

Topper's Solved these Questions

  • PERMUTATIONS

    RS AGGARWAL|Exercise EXAMPLE|23 Videos
  • PERMUTATIONS

    RS AGGARWAL|Exercise ILLUSTRATIVE EXAMPLES|25 Videos
  • PARABOLA

    RS AGGARWAL|Exercise EXERCISE-22|10 Videos
  • PRINCIPLE OF MATHEMATICAL INDUCTION

    RS AGGARWAL|Exercise EXERCISE 4|23 Videos

Similar Questions

Explore conceptually related problems

If (n+2)! = 60 xx (n-1)! , find n.

If (n+1)! =12 xx [(n-1)!] , find the value of n.

If (n+1)!=90[(n-1)!], fin d n

If (n+1)! =12xx(n-1)! , find the value of n.

If (n+1)! = 6[(n-1)!] . Find n

If (n+3)! =56xx(n+1)! , find the value of n.

If (n!)/((2!)xx(n-2)!): (n!)/((4!)xx(n-4)!)=2:1 , find the value of n.

If ""^(2n-1)P_(n): ""^(2n+1)P_(n-1)=22:7 , find n.