Home
Class 11
MATHS
Prove that n(n-1)(n-2) ...(n-r+1)=(n!)/(...

Prove that `n(n-1)(n-2) ...(n-r+1)=(n!)/((n-r)!). `

Text Solution

Verified by Experts

We have
`n(n-1)(n-2) ...(n-r+1)`
` =(n(n-1)(n-2)...(n-r+1).(n-r)!)/((n-r)!) `
[ multiplying num. and denom. by `(n-r)! `]
`=(n!)/((n-r)!). `
Hence, ` n(n-1)(n-2)...(n-r+1)=(n!)/((n-r)!). `
Promotional Banner

Topper's Solved these Questions

  • PERMUTATIONS

    RS AGGARWAL|Exercise EXAMPLE|23 Videos
  • PERMUTATIONS

    RS AGGARWAL|Exercise ILLUSTRATIVE EXAMPLES|25 Videos
  • PARABOLA

    RS AGGARWAL|Exercise EXERCISE-22|10 Videos
  • PRINCIPLE OF MATHEMATICAL INDUCTION

    RS AGGARWAL|Exercise EXERCISE 4|23 Videos

Similar Questions

Explore conceptually related problems

Prove that (n-r+1)(n!)/((n-r+1)!)=(n!)/((n-r)!)

Prove that (n-r+1)(n!)/((n-r+1)!)=(n!)/((n-r)!)

Prove that (n-r+1)((n!)/((n-r+1)!))=((n!)/((n-r)!))

Prove that ((n-1)!)/((n-r-1)!)+r.((n-1)!)/((n-r)!)=(n!)/((n-r)!)

Prove that (n!)/(r!(n-r)!)+(n!)/((r-1)!(n-r+1)!) =((n+1)!)/(r!(n-r+1)!)

Prove that .^(n-1)P_(r)+r.^(n-1)P_(r-1)=.^(n)P_(r)

Prove that : (i) (n!)/(r!)=n(n-1)(n-2)...(r+1) (ii) (n-r+1)*(n!)/((n-r+1)!)=(n!)/((n-r)!) (iii) (n!)/(r!(n-r)!)+(n!)/((r-1)!(n-r+1)!)=((n+1)!)/(r!(n-r+1)!)

Prove that (n!)/(r!)=n(n-1)(n-2)dots(r+1)

11. Prove that nP_(r)=n(n-1)P_(r-1)

Prove that: (i) (n!)/(r!) = n(n-1) (n-2)......(r+1) (ii) (n-r+1). (n!)/((n-r+1)!) = (n!)/((n-r)!)