Home
Class 12
MATHS
What is the value of (sin^(4)theta-cos^(...

What is the value of `(sin^(4)theta-cos^(4)theta+1)"cosec"^(2)theta`?

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that : (sin^(4)theta- cos^(4) theta+ 1) "cosec"^(2)theta=2

Prove that : (sin^(4)theta- cos^(4) theta+ 1) "cosec"^(2)theta=2

The value of (1+ cos theta)(1- cos theta) "cosec"^(2) theta =

What is the value of (sin theta)/(cosec theta)+(cos theta)/(sec theta) ?

The value of sin^(2)theta cos^(2)theta(sec^(2)theta+cosec^(2)theta)-1 is

What is the value of ( 1 - 2 sin ^(2) theta cos^(2) theta )/( sin ^(4) theta + cos^(4) theta ) + 4 equal to

If " cosec"^(2) theta=(625)/(576) , then what is the value of [((sin theta - cos theta))/(sin theta + cos theta)] ?

If sin^(2)theta-cos^(2)theta=(1)/(4) , then the value of (sin^(4)theta-cos^(4)theta) is :

Prove each of the following identities : '(i) sin^(2)theta + cos^(4) theta = cos^(2) theta + sin^(4) theta (ii) "cosec"^(4) theta - "cosec"^(2) theta = cot^(4) theta + cot^(2) theta

Prove each of the following identities : (i) sin^(6) theta + cos^(6)theta = 1- 3 sin^(2) theta cos^(2) theta (ii) sin^(2)theta + cos^(4) theta = cos^(2) theta + sin^(4) theta (iii) "cosec"^(4) theta - "cosec"^(2) theta = cot^(4) theta + cot^(2) theta