Home
Class 11
MATHS
(i) If ""^(n)P(5)=20xx""^(n)P(3), find...

(i) If ` ""^(n)P_(5)=20xx""^(n)P_(3)`, find n.
(ii) If `16xx""^(n)P_(3)=13xx""^(n+1)P_(3)`, find n.
(iii) If `""^(2n)P_(3)=100xx""^(n)P_(2)`, find n.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given problems step by step, we will use the formula for permutations, which is given by: \[ nP_r = \frac{n!}{(n-r)!} \] ### (i) If \( nP_5 = 20 \times nP_3 \), find \( n \). 1. **Write the permutation formulas:** \[ nP_5 = \frac{n!}{(n-5)!} \quad \text{and} \quad nP_3 = \frac{n!}{(n-3)!} \] 2. **Set up the equation:** \[ \frac{n!}{(n-5)!} = 20 \times \frac{n!}{(n-3)!} \] 3. **Cancel \( n! \) from both sides:** \[ \frac{1}{(n-5)!} = 20 \times \frac{1}{(n-3)!} \] 4. **Rewrite \( (n-3)! \):** \[ (n-3)! = (n-3)(n-4)(n-5)! \] 5. **Substitute into the equation:** \[ \frac{1}{(n-5)!} = \frac{20}{(n-3)(n-4)(n-5)!} \] 6. **Cross-multiply:** \[ (n-3)(n-4) = 20 \] 7. **Expand and rearrange:** \[ n^2 - 7n + 12 - 20 = 0 \implies n^2 - 7n - 8 = 0 \] 8. **Factor the quadratic:** \[ (n - 8)(n + 1) = 0 \] 9. **Solve for \( n \):** \[ n = 8 \quad \text{(we discard } n = -1 \text{ since } n \text{ must be positive)} \] ### (ii) If \( 16 \times nP_3 = 13 \times (n+1)P_3 \), find \( n \). 1. **Write the permutation formulas:** \[ nP_3 = \frac{n!}{(n-3)!} \quad \text{and} \quad (n+1)P_3 = \frac{(n+1)!}{(n-2)!} \] 2. **Set up the equation:** \[ 16 \times \frac{n!}{(n-3)!} = 13 \times \frac{(n+1)!}{(n-2)!} \] 3. **Rewrite \( (n+1)! \):** \[ (n+1)! = (n+1) \times n! \] 4. **Substitute into the equation:** \[ 16 \times \frac{n!}{(n-3)!} = 13 \times \frac{(n+1) \times n!}{(n-2)!} \] 5. **Cancel \( n! \) from both sides:** \[ 16 \times \frac{1}{(n-3)!} = 13 \times \frac{(n+1)}{(n-2)(n-3)!} \] 6. **Cross-multiply:** \[ 16(n-2) = 13(n+1) \] 7. **Expand and rearrange:** \[ 16n - 32 = 13n + 13 \implies 3n = 45 \implies n = 15 \] ### (iii) If \( 2nP_3 = 100 \times nP_2 \), find \( n \). 1. **Write the permutation formulas:** \[ 2nP_3 = \frac{(2n)!}{(2n-3)!} \quad \text{and} \quad nP_2 = \frac{n!}{(n-2)!} \] 2. **Set up the equation:** \[ \frac{(2n)!}{(2n-3)!} = 100 \times \frac{n!}{(n-2)!} \] 3. **Rewrite \( (2n)! \):** \[ (2n)! = (2n)(2n-1)(2n-2)(2n-3)! \] 4. **Substitute into the equation:** \[ (2n)(2n-1)(2n-2) = 100 \times \frac{n!}{(n-2)!} \] 5. **Rewrite \( n! \):** \[ n! = n(n-1)(n-2)! \] 6. **Substitute into the equation:** \[ (2n)(2n-1)(2n-2) = 100 \times n(n-1) \] 7. **Expand and rearrange:** \[ 8n^3 - 12n^2 + 4n = 100n^2 - 100n \] 8. **Combine like terms:** \[ 8n^3 - 112n^2 + 104n = 0 \] 9. **Factor out \( n \):** \[ n(8n^2 - 112n + 104) = 0 \] 10. **Solve the quadratic:** \[ 8n^2 - 112n + 104 = 0 \implies n^2 - 14n + 13 = 0 \] 11. **Factor the quadratic:** \[ (n - 13)(n - 1) = 0 \] 12. **Solve for \( n \):** \[ n = 13 \quad \text{or} \quad n = 1 \] ### Summary of Solutions: - (i) \( n = 8 \) - (ii) \( n = 15 \) - (iii) \( n = 13 \) or \( n = 1 \)
Promotional Banner

Topper's Solved these Questions

  • PERMUTATIONS

    RS AGGARWAL|Exercise EXERCISE 8D|28 Videos
  • PERMUTATIONS

    RS AGGARWAL|Exercise EXERCISE 8E|20 Videos
  • PERMUTATIONS

    RS AGGARWAL|Exercise EXERCISE 8B|36 Videos
  • PARABOLA

    RS AGGARWAL|Exercise EXERCISE-22|10 Videos
  • PRINCIPLE OF MATHEMATICAL INDUCTION

    RS AGGARWAL|Exercise EXERCISE 4|23 Videos

Similar Questions

Explore conceptually related problems

If ""^(n)P_(4) =2xx""^(5)P_(3) , find n.

(i) If ""^(n)P_(4): ""^(n)P_(5)=1:2 , find n. (ii) If ""^(n-1)P_(3): ""^(n+1)P_(3)=5:12 , find n.

If ^(n)P_(5)=20^(n)P_(3), find the value of n

If ^(n+1)P_(5):^(n)P_(6)=2:7 , find n.

2.^(n)P_(3)=^(n+1)P_(3)

If .^(n)P_(5)=20 .^(n)P_(3) , find the value of n.

If .^(n-1)P_(3):^(n+1)P_(3)=5:12, find n