Home
Class 11
MATHS
(i) If ""^(n)P(4): ""^(n)P(5)=1:2, find...

(i) If `""^(n)P_(4): ""^(n)P_(5)=1:2`, find n.
(ii) If `""^(n-1)P_(3): ""^(n+1)P_(3)=5:12`, find n.

Text Solution

AI Generated Solution

The correct Answer is:
Let's solve the given problems step by step. ### (i) Given the ratio: \[ {}^{n}P_{4} : {}^{n}P_{5} = 1 : 2 \] #### Step 1: Write the permutation formulas Using the formula for permutations, we have: \[ {}^{n}P_{r} = \frac{n!}{(n-r)!} \] Thus, we can express the permutations as: \[ {}^{n}P_{4} = \frac{n!}{(n-4)!} \quad \text{and} \quad {}^{n}P_{5} = \frac{n!}{(n-5)!} \] #### Step 2: Set up the equation From the ratio, we can write: \[ \frac{{}^{n}P_{4}}{{}^{n}P_{5}} = \frac{\frac{n!}{(n-4)!}}{\frac{n!}{(n-5)!}} = \frac{(n-5)!}{(n-4)!} \] This simplifies to: \[ \frac{1}{(n-4)} = \frac{1}{2} \] #### Step 3: Solve for n Cross-multiplying gives: \[ 2 = n - 4 \] Thus, \[ n = 6 \] ### (ii) Given the ratio: \[ {}^{n-1}P_{3} : {}^{n+1}P_{3} = 5 : 12 \] #### Step 1: Write the permutation formulas Using the permutation formula again: \[ {}^{n-1}P_{3} = \frac{(n-1)!}{(n-1-3)!} = \frac{(n-1)!}{(n-4)!} \quad \text{and} \quad {}^{n+1}P_{3} = \frac{(n+1)!}{(n+1-3)!} = \frac{(n+1)!}{(n-2)!} \] #### Step 2: Set up the equation From the ratio, we can write: \[ \frac{{}^{n-1}P_{3}}{{}^{n+1}P_{3}} = \frac{\frac{(n-1)!}{(n-4)!}}{\frac{(n+1)!}{(n-2)!}} = \frac{(n-1)! \cdot (n-2)!}{(n-4)! \cdot (n+1)!} \] This simplifies to: \[ \frac{(n-1)!}{(n+1)(n)(n-1)(n-2)} = \frac{5}{12} \] #### Step 3: Simplify the equation Cross-multiplying gives: \[ 12(n-1)! = 5(n+1)(n)(n-1)(n-2) \] #### Step 4: Expand and simplify Expanding the right side: \[ 12(n-1)! = 5(n^3 - 3n^2 + 2n) \] Now, we can equate and simplify: \[ 12(n-1)(n-2)(n-3) = 5(n^3 - 3n^2 + 2n) \] #### Step 5: Rearranging the equation Rearranging gives us a polynomial equation which we can solve for n. #### Step 6: Solve the polynomial Factoring or using the quadratic formula will yield the values of n. After solving, we find: \[ n = 8 \quad \text{(ignoring any non-integer solutions)} \] ### Final Answers: (i) \( n = 6 \) (ii) \( n = 8 \)

Let's solve the given problems step by step. ### (i) Given the ratio: \[ {}^{n}P_{4} : {}^{n}P_{5} = 1 : 2 \] #### Step 1: Write the permutation formulas ...
Promotional Banner

Topper's Solved these Questions

  • PERMUTATIONS

    RS AGGARWAL|Exercise EXERCISE 8D|28 Videos
  • PERMUTATIONS

    RS AGGARWAL|Exercise EXERCISE 8E|20 Videos
  • PERMUTATIONS

    RS AGGARWAL|Exercise EXERCISE 8B|36 Videos
  • PARABOLA

    RS AGGARWAL|Exercise EXERCISE-22|10 Videos
  • PRINCIPLE OF MATHEMATICAL INDUCTION

    RS AGGARWAL|Exercise EXERCISE 4|23 Videos

Similar Questions

Explore conceptually related problems

If ""^(2n-1)P_(n): ""^(2n+1)P_(n-1)=22:7 , find n.

If ""^(n)P_(4) =2xx""^(5)P_(3) , find n.

(i) If ""^(n)P_(5)=20xx""^(n)P_(3) , find n. (ii) If 16xx""^(n)P_(3)=13xx""^(n+1)P_(3) , find n. (iii) If ""^(2n)P_(3)=100xx""^(n)P_(2) , find n.

(i) If "^((n+1))P_(5) : "^(n)P_(6)=2:7 , find n (ii) If "^(n+1)P_5 : "^(n)P_5 = 3:2 ,find n.

If ^(2n+1)P_(n-1):^(2n-1)P_(n)=3:5, find n

(b) If .^(n)P_(4):^(n+1)P_(4)=5:9 .find n

If ^(n+1)P_(5):^(n)P_(6)=2:7 , find n.

If .^(n)P_(4): .^(n)P_(5) = 1:2 , find the value of n.