Home
Class 11
MATHS
If ""^(15)P(r-1): ""^(16)P(r-2)=3:4, f...

If ` ""^(15)P_(r-1): ""^(16)P_(r-2)=3:4`, find r.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we start with the given ratio of permutations: \[ \frac{^{15}P_{r-1}}{^{16}P_{r-2}} = \frac{3}{4} \] ### Step 1: Write the formula for permutations The formula for permutations is given by: \[ ^{n}P_{r} = \frac{n!}{(n-r)!} \] ### Step 2: Apply the formula to the permutations Using the formula, we can express \(^{15}P_{r-1}\) and \(^{16}P_{r-2}\): \[ ^{15}P_{r-1} = \frac{15!}{(15 - (r-1))!} = \frac{15!}{(16 - r)!} \] \[ ^{16}P_{r-2} = \frac{16!}{(16 - (r-2))!} = \frac{16!}{(18 - r)!} \] ### Step 3: Substitute into the ratio Now, substitute these into the ratio: \[ \frac{\frac{15!}{(16 - r)!}}{\frac{16!}{(18 - r)!}} = \frac{3}{4} \] ### Step 4: Simplify the ratio This simplifies to: \[ \frac{15! \cdot (18 - r)!}{16! \cdot (16 - r)!} = \frac{3}{4} \] ### Step 5: Rewrite \(16!\) We know that \(16! = 16 \cdot 15!\), so we can rewrite the equation as: \[ \frac{15! \cdot (18 - r)!}{16 \cdot 15! \cdot (16 - r)!} = \frac{3}{4} \] ### Step 6: Cancel \(15!\) Cancel \(15!\) from both sides: \[ \frac{(18 - r)!}{16 \cdot (16 - r)!} = \frac{3}{4} \] ### Step 7: Cross-multiply Cross-multiply to eliminate the fraction: \[ 4(18 - r)! = 48(16 - r)! \] ### Step 8: Rewrite \( (18 - r)! \) We can express \( (18 - r)! \) in terms of \( (16 - r)! \): \[ (18 - r)! = (18 - r)(17 - r)(16 - r)! \] Substituting this back into the equation gives: \[ 4(18 - r)(17 - r)(16 - r)! = 48(16 - r)! \] ### Step 9: Cancel \( (16 - r)! \) Assuming \( (16 - r)! \neq 0 \), we can cancel it: \[ 4(18 - r)(17 - r) = 48 \] ### Step 10: Simplify the equation Dividing both sides by 4: \[ (18 - r)(17 - r) = 12 \] ### Step 11: Expand and rearrange Expanding the left side gives: \[ 306 - 35r + r^2 = 12 \] Rearranging this leads to: \[ r^2 - 35r + 294 = 0 \] ### Step 12: Solve the quadratic equation Using the quadratic formula \( r = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \): Here, \( a = 1, b = -35, c = 294 \): \[ b^2 - 4ac = 35^2 - 4 \cdot 1 \cdot 294 = 1225 - 1176 = 49 \] Thus, \[ r = \frac{35 \pm 7}{2} \] Calculating the two possible values: 1. \( r = \frac{42}{2} = 21 \) 2. \( r = \frac{28}{2} = 14 \) ### Step 13: Determine the valid value of r Since \( r \) must be less than or equal to 16 (as \( ^{15}P_{r-1} \) and \( ^{16}P_{r-2} \) are defined), we take: \[ r = 14 \] ### Final Answer: Thus, the value of \( r \) is: \[ \boxed{14} \]

To solve the problem, we start with the given ratio of permutations: \[ \frac{^{15}P_{r-1}}{^{16}P_{r-2}} = \frac{3}{4} \] ### Step 1: Write the formula for permutations The formula for permutations is given by: ...
Promotional Banner

Topper's Solved these Questions

  • PERMUTATIONS

    RS AGGARWAL|Exercise EXERCISE 8D|28 Videos
  • PERMUTATIONS

    RS AGGARWAL|Exercise EXERCISE 8E|20 Videos
  • PERMUTATIONS

    RS AGGARWAL|Exercise EXERCISE 8B|36 Videos
  • PARABOLA

    RS AGGARWAL|Exercise EXERCISE-22|10 Videos
  • PRINCIPLE OF MATHEMATICAL INDUCTION

    RS AGGARWAL|Exercise EXERCISE 4|23 Videos

Similar Questions

Explore conceptually related problems

15P_(r-1):^(15)P_(r-2)=3:4, then r=

If P(15,r-1):P(16,r-2)=3:4, find r.

If ""^(22)P_(r+1):""^(20)P_(r+2)=11:52, find r.

(i) If ""^(5)P_(r)=2xx""^(6)P_(r-1) , find r. (ii) If ""^(20)P_(r)=13xx""^(20)P_(r-1) , find r. (iii) If ""^(11)P_(r)=""^(12)P_(r-1) , find r.

If ^(56)P_(r+6):^(54)P_(r+3)=30800:1, find r

(a) If .^(22)P_(r+1):^(20)P_(r+2)=11 : 52 , find r. (b) If .^(56)P_(r+6):^(54)P_(r+3)=30800: 1 , find r.

If 22P_(r+1):^(20)P_(r+2)=11:52, find r