Home
Class 11
MATHS
Prove that 1+1* ""^(1)P(1)+2* ""^(2)P(2)...

Prove that `1+1* ""^(1)P_(1)+2* ""^(2)P_(2)+3* ""^(3)P_(3) + … +n* ""^(n)P_(n)=""^(n+1)P_(n+1).`

Text Solution

Verified by Experts

`1+1*(1!)+2*(2!)+3*(3!) +...n*(n!)`
`=1+(2-1)(1!)+(3-1)*(2!)+(4-1)*(3!)+...+{(n+1)-1}*(n!)`
`={1+2*(1!)+3*(2!)+4*(3!)+...+(n+1)*(n!)}-{1!+2!+3!+...+n!}`
`={1+2!+3!+4!+… +n!+(n+1)!}-{1!+2!+3!+...+n!}=(n+1)!.`
Promotional Banner

Topper's Solved these Questions

  • PERMUTATIONS

    RS AGGARWAL|Exercise EXERCISE 8D|28 Videos
  • PERMUTATIONS

    RS AGGARWAL|Exercise EXERCISE 8E|20 Videos
  • PERMUTATIONS

    RS AGGARWAL|Exercise EXERCISE 8B|36 Videos
  • PARABOLA

    RS AGGARWAL|Exercise EXERCISE-22|10 Videos
  • PRINCIPLE OF MATHEMATICAL INDUCTION

    RS AGGARWAL|Exercise EXERCISE 4|23 Videos

Similar Questions

Explore conceptually related problems

2.^(n)P_(3)=^(n+1)P_(3)

Let ."""^(n)P_(r) denote the number of permutations of n different things taken r at a time . Then , prove that 1+1."""^1P_(1) + 2 ."""^(2)P_(2) + 3."""^(3)P_(3) +.....+ n . """^(n)P_(n) = . """^(n+1)P_(n+1)

Prove that: (i) ""^(n)P_(n)=""^(n)P_(n-1) " (ii) "^(n)P_(r)=n* ""^(n-1)P_(r-1) " (iii) "^(n-1)P_(r)+r* ""^(n-1)P_(r-1)=""^(n)P_(r)

Find n if ""^(n)P_(4)=18 ""^(n-1)P_3

The value of ""^(2)P_(1)+""^(3)P_(1)+……+ ""^(n)P_(1) is equal to :

Prove that .^(n-1)P_(r)+r.^(n-1)P_(r-1)=.^(n)P_(r)

(i) If ""^(n)P_(5)=20xx""^(n)P_(3) , find n. (ii) If 16xx""^(n)P_(3)=13xx""^(n+1)P_(3) , find n. (iii) If ""^(2n)P_(3)=100xx""^(n)P_(2) , find n.

Find n, ""^(n+5)P_(n+1)=(11)/(2)(n-1)*""^(n+3)P_(n).