Home
Class 11
MATHS
If f(x)={{:(|x|+1,xlt0),(0,x=0) ,(|x|-1...

If ` f(x)={{:(|x|+1,xlt0),(0,x=0) ,(|x|-1,xgt0):}`
for what value (s) of a does `underset(xrarra)"lim"f(x)` exists?

Text Solution

Verified by Experts

Case 1. When `a lt 0.`
In this case, we have
`underset(xtoa^(+))(lim)f(x)=underset(hto0)(lim)f(a+h)=underset(hto0)(lim){|a+h|+1}=|a|+1.`
`underset(xtoa^(+))(lim)f(x)underset(hto0)(lim)f(a-h)=underset(hto0)(lim){|a-h|+1}=|a|+1.`
`therefore underset(xtoa^(+))limf(x)=underset(xtoa)limf(x)=|a|+1.`
So, in this case, `underset (xtoa)lim` f(x)n exists.
Case 2. When `a lt 0.`
In this case, we have
`underset (xtoa^(+))limf(x)=underset(xto0)lim(a+h)=underset(hto0)lim{|a-h|-1}=|a|-1.`
`underset(xtoa^(+))limf(x)=underset(hto0)limf(a-h)=underset(hto0)lim{|a-h|-1}=|a|-1.`
`thereforeunderset(xtoa^(+))limf(x)=underset(xto0)limf(x)=|a|-1.`
So, in this case, `unederset(xtoa)lim f(x)` exisets.
Case 3.
When `a lt 0.`
In this case, we have
`underset(xto0^(-))limf(x)=underset(hto0)limf(a+h)=underset(hto0)lim{|a-h|-1}=|a|-1.`
`underset(xto0)limf(x)=underset(hto0)limf(0-h)=underset(hto0)lim{|-h|+1}=1.`
Thus, Thus ` underset(xto0^(+))limf(x)neunderset(xto0^(-))limf(x).`
Hence,` underset(xto0)limf(x)` does not exists.
Thus, `underset(xtoa)limf(x)` exists only when `a ne 0.`
Promotional Banner

Topper's Solved these Questions

  • LIMIT

    RS AGGARWAL|Exercise EXERCISE 27A|40 Videos
  • LIMIT

    RS AGGARWAL|Exercise EXERCISE 27B|72 Videos
  • LIMIT

    RS AGGARWAL|Exercise EXERCISE 27C|15 Videos
  • HYPERBOLA

    RS AGGARWAL|Exercise EXERCISE 24|23 Videos
  • LINEAR INEQUATIONS (IN ONE VARIABLE)

    RS AGGARWAL|Exercise EXERCISE 6B|12 Videos

Similar Questions

Explore conceptually related problems

If f(x)={{:(|x|+1,xlt0),(0,x=0) ,(|x|-1,xgt0):} for what value (s) of a does lim_(xrarra) f(x) exists?

If f(x)={(x-1",",xlt0),(1/4",",x=0),(x^2",",xgt0):} , then

If f(x)={{:(,|x|+1, x lt 0),(, 0,x=0),(,|x|-1, x gt 0):}" then "underset(x to a)lim f(x) exists for all

If f(x)={{:((x-|x|)/(x)","xne0),(2", "x=0):}, show that lim_(xto0) f(x) does not exist.

Let f(x)={{:((|x|)/(x)",",xne0),(2",",x=0.):} Show that lim_(xrarr0)f(x) does not exist.

f(x)={(0,x≤0),(x-3,xgt0):} The function f(x) is

Let f(x){{:((x)/(|x|)",",xne0),(0",",x=0):} Show that lim_(xrarr0)f(x) does not exist.

Let f(x){:{(1+sinx", "xlt0),(x^(2)-x+1ge0):} Then

RS AGGARWAL-LIMIT-SOLVED EXAMPLES
  1. Evaluate lim(xrarr0)((x^(3)cotx)/(1-cosx)).

    Text Solution

    |

  2. lim(x->0)(sin3x+7x)/(4x+sin2x)

    Text Solution

    |

  3. Evaluate lim(x-> 0) (tan3x-2x)/(3x- sin^2 x)

    Text Solution

    |

  4. Evaluate lim(xrarr0)(xtan4x)/(1-cos4x).

    Text Solution

    |

  5. Evaluate lim(xrarr0)((1-cosxsqrt(cos2x)))/(x^(2)).

    Text Solution

    |

  6. Evaluate lim(xrarr(pi)/(4))((sinx-cosx))/((x-(pi)/(4))).

    Text Solution

    |

  7. Evaluate lim(xrarr(pi)/(2))(cosx)/(((pi)/(2)-x)).

    Text Solution

    |

  8. Evaluate lim(xrarr(pi)/(6))((sqrt3sinx-cosx))/((x-(pi)/(6))).

    Text Solution

    |

  9. Let f(x){:{(2x+3",",xle0),(3(x+1)",",xgt0.):} Find (i) lim(xrarr0)f(...

    Text Solution

    |

  10. Let f(x)={:{(x^(2)-1",",xle1),(-x^(2)-1",",xgt1.):} "Find"lim(xrarr1)f...

    Text Solution

    |

  11. Let f(x)={:{((|x|)/(x)",",xne0),(0",",x=0.):} Find lim(xrarr0)f(x).

    Text Solution

    |

  12. Suppose f(x)={(a+bx, x<1), (4, x=1), (b-ax, x>1):} and if lim(xrarr1) ...

    Text Solution

    |

  13. If f(x)={{:(|x|+1,xlt0),(0,x=0) ,(|x|-1,xgt0):} for what value (s) ...

    Text Solution

    |

  14. Let f(x)={{:(mx^(2)+n",",xlt0),(nx+m",",0lexle1),(nx^(3)+m",",xgt1):} ...

    Text Solution

    |

  15. Let a(1),a(2),...,a(n) be fixed real numbers and let f(x)=(x-a(1))(...

    Text Solution

    |

  16. Let f(x)={x}= greater integer less than or eqal to x. For any integer ...

    Text Solution

    |

  17. If is an odd function and underset(xto0)f(x) exists then prove tha...

    Text Solution

    |

  18. If f is an even function, prove that lim(xto0^(-)) (x)=lim(xto0^(+)) ...

    Text Solution

    |

  19. Show that lim(xto0^(-)) ((e^(1//x)-1)/(e^(1//x)+1)) does not exist.

    Text Solution

    |

  20. Show that ("lim")(x->0)x/(|x|) does not exist.

    Text Solution

    |