Home
Class 11
MATHS
Let f(x)={{:(mx^(2)+n",",xlt0),(nx+m",",...

Let `f(x)={{:(mx^(2)+n",",xlt0),(nx+m",",0lexle1),(nx^(3)+m",",xgt1):}`
For what vlaues of intergeras of integers a and n, `lim_(xto0) f(x)and lim_(xto1) f(x)` both exist?

Text Solution

Verified by Experts

We have
`underset(xto0^(+))limf(x)=underset(hto0)limf(0+h)underset(hto0)limf(h)=underset(hto0)lim(nh+m)=m.`
`underset(xto0^(-))limf(x)=underset(hto0)limf(0-h)=underset(hto0)limf(-h)=underset(hto0)lim"{"m(-h)^(2)+n"}"=underset(hto0)lim(mh^(2)+n)=n.`
` therefore underset(xto0)limf(x)` exist only when `m=n.`
Now, `underset(xto1^(+))limf(x)=underset(hto0)limf(1+h)=underset(xto0)lim"{"n(12+h)^(3)+m"}"=underset(hto0)lim{n(1+h^(3)+3h+3h^(2))+m}=(n+m).`
And, `underset(xto1^(-))limf(x)=underset(hto0)limf(1-h)=underset(hto0)lim{n(1-h)+m}=(n+m).`
`thereforeunderset(xto1)limf(x)=(n+m).`
Hence `underset(xto0)f(x)and underset(xto1)limf(x)` both exist only when `m=n.`
Promotional Banner

Topper's Solved these Questions

  • LIMIT

    RS AGGARWAL|Exercise EXERCISE 27A|40 Videos
  • LIMIT

    RS AGGARWAL|Exercise EXERCISE 27B|72 Videos
  • LIMIT

    RS AGGARWAL|Exercise EXERCISE 27C|15 Videos
  • HYPERBOLA

    RS AGGARWAL|Exercise EXERCISE 24|23 Videos
  • LINEAR INEQUATIONS (IN ONE VARIABLE)

    RS AGGARWAL|Exercise EXERCISE 6B|12 Videos

Similar Questions

Explore conceptually related problems

If f(x)={{:(mx^(2)+n",", x lt 0), (nx+m",", 0 le x le 1), (nx^(3)+m",", x gt 1):} . For what integers m and n does lim_(x to 0)f(x)" and "lim_(x to 1)f(x) exist ?

Let f(x)={{:(1+x^(2)",",0lexle1),(2-x",",xgt1.):} Show that lim_(xrarr0)f(x) does not exist.

If f(x)={{:(mx^2+x+n,"," x lt 0),(nx +m ,"," 0 le x le 1),(2nx^3+x^2-2x+m,","x gt1):} and lim_(xto0)f(x) and lim_(xto1) f(x) exist then

If f(x)={mx^(2)+n,x 1}. For what integers m and n does both lim_(x rarr0)f(x) and lim_(x rarr1)f(x) exist?

If f is an even function, prove that lim_(xto0^(-)) (x)=lim_(xto0^(+)) f(x).

If lim_( xto 2 ) (f(x) -f(2))/( x-2) exist ,then

What is lim_(xto0) (sqrt(1+x-1))/(x)

If f(x)={{:(|x|+1,xlt0),(0,x=0) ,(|x|-1,xgt0):} for what value (s) of a does lim_(xrarra) f(x) exists?

Find lim_(xto0) sqrt((1)/(2)(1-cos2x))/(x) if exists.

lim_(xto0)(sin2x)/(1-sqrt(1-x))

RS AGGARWAL-LIMIT-SOLVED EXAMPLES
  1. Evaluate lim(xrarr0)((x^(3)cotx)/(1-cosx)).

    Text Solution

    |

  2. lim(x->0)(sin3x+7x)/(4x+sin2x)

    Text Solution

    |

  3. Evaluate lim(x-> 0) (tan3x-2x)/(3x- sin^2 x)

    Text Solution

    |

  4. Evaluate lim(xrarr0)(xtan4x)/(1-cos4x).

    Text Solution

    |

  5. Evaluate lim(xrarr0)((1-cosxsqrt(cos2x)))/(x^(2)).

    Text Solution

    |

  6. Evaluate lim(xrarr(pi)/(4))((sinx-cosx))/((x-(pi)/(4))).

    Text Solution

    |

  7. Evaluate lim(xrarr(pi)/(2))(cosx)/(((pi)/(2)-x)).

    Text Solution

    |

  8. Evaluate lim(xrarr(pi)/(6))((sqrt3sinx-cosx))/((x-(pi)/(6))).

    Text Solution

    |

  9. Let f(x){:{(2x+3",",xle0),(3(x+1)",",xgt0.):} Find (i) lim(xrarr0)f(...

    Text Solution

    |

  10. Let f(x)={:{(x^(2)-1",",xle1),(-x^(2)-1",",xgt1.):} "Find"lim(xrarr1)f...

    Text Solution

    |

  11. Let f(x)={:{((|x|)/(x)",",xne0),(0",",x=0.):} Find lim(xrarr0)f(x).

    Text Solution

    |

  12. Suppose f(x)={(a+bx, x<1), (4, x=1), (b-ax, x>1):} and if lim(xrarr1) ...

    Text Solution

    |

  13. If f(x)={{:(|x|+1,xlt0),(0,x=0) ,(|x|-1,xgt0):} for what value (s) ...

    Text Solution

    |

  14. Let f(x)={{:(mx^(2)+n",",xlt0),(nx+m",",0lexle1),(nx^(3)+m",",xgt1):} ...

    Text Solution

    |

  15. Let a(1),a(2),...,a(n) be fixed real numbers and let f(x)=(x-a(1))(...

    Text Solution

    |

  16. Let f(x)={x}= greater integer less than or eqal to x. For any integer ...

    Text Solution

    |

  17. If is an odd function and underset(xto0)f(x) exists then prove tha...

    Text Solution

    |

  18. If f is an even function, prove that lim(xto0^(-)) (x)=lim(xto0^(+)) ...

    Text Solution

    |

  19. Show that lim(xto0^(-)) ((e^(1//x)-1)/(e^(1//x)+1)) does not exist.

    Text Solution

    |

  20. Show that ("lim")(x->0)x/(|x|) does not exist.

    Text Solution

    |